Danyu Li, Siyi Zou, Ziyang Huang, Congcong Sun, Guozhen Liu
{"title":"Isolation and quantification of L1CAM-positive extracellular vesicles on a chip as a potential biomarker for Parkinson's Disease","authors":"Danyu Li, Siyi Zou, Ziyang Huang, Congcong Sun, Guozhen Liu","doi":"10.1002/jev2.12467","DOIUrl":null,"url":null,"abstract":"<p>Extracellular vesicles (EVs) carry disease-specific molecular profiles, demonstrating massive potential in biomarker discovery. In this study, we developed an integrated biochip platform, termed EVID-biochip (EVs identification and detection biochip), which integrates in situ electrochemical protein detection with on-chip antifouling-immunomagnetic beads modified with CD81 antibodies and zwitterion molecules, enabling efficient isolation and detection of neuronal EVs. The capability of the EVID-biochip to isolate common EVs and detect neuronal EVs associated with Parkinson's disease in human serum is successfully demonstrated, using the transmembrane protein L1-cell adhesion molecule (L1CAM) as a target biomarker. The EVID-biochip exhibited high efficiency and specificity for the detection of L1CAM with a sensitivity of 1 pg/mL. Based on the validation of 76 human serum samples, for the first time, this study discovered that the level of L1CAM/neuronal EV particles in serum could serve as a reliable indicator to distinguish Parkinson's disease from control groups with AUC = 0.973. EVID-biochip represents a reliable and rapid liquid biopsy platform for the analysis of complex biofluids offering EVs isolation and detection in a single chip, requiring a small sample volume (300 µL) and an assay time of 1.5 h. This approach has the potential to advance the diagnosis and biomarker discovery of various neurological disorders and other diseases.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":null,"pages":null},"PeriodicalIF":15.5000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12467","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.12467","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles (EVs) carry disease-specific molecular profiles, demonstrating massive potential in biomarker discovery. In this study, we developed an integrated biochip platform, termed EVID-biochip (EVs identification and detection biochip), which integrates in situ electrochemical protein detection with on-chip antifouling-immunomagnetic beads modified with CD81 antibodies and zwitterion molecules, enabling efficient isolation and detection of neuronal EVs. The capability of the EVID-biochip to isolate common EVs and detect neuronal EVs associated with Parkinson's disease in human serum is successfully demonstrated, using the transmembrane protein L1-cell adhesion molecule (L1CAM) as a target biomarker. The EVID-biochip exhibited high efficiency and specificity for the detection of L1CAM with a sensitivity of 1 pg/mL. Based on the validation of 76 human serum samples, for the first time, this study discovered that the level of L1CAM/neuronal EV particles in serum could serve as a reliable indicator to distinguish Parkinson's disease from control groups with AUC = 0.973. EVID-biochip represents a reliable and rapid liquid biopsy platform for the analysis of complex biofluids offering EVs isolation and detection in a single chip, requiring a small sample volume (300 µL) and an assay time of 1.5 h. This approach has the potential to advance the diagnosis and biomarker discovery of various neurological disorders and other diseases.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.