SH.B. Chuaychu , C. Sirisereewan , N. Techakriengkrai , P. Tummaruk , R. Thanawongnuwech , T. Nedumpun
{"title":"Enhancement of systemic virus-specific T lymphocyte responses in pigs supplemented with algae-derived β-glucan","authors":"SH.B. Chuaychu , C. Sirisereewan , N. Techakriengkrai , P. Tummaruk , R. Thanawongnuwech , T. Nedumpun","doi":"10.1016/j.tvjl.2024.106182","DOIUrl":null,"url":null,"abstract":"<div><p>Algae-derived β-glucan has been widely used as a feed additive in the swine industry. The supplementation of β-glucan aims to improve growth performance and modulate the immunity of pigs. However, the potential effects of supplementing β-glucan from algae on immune responses in pigs—specifically antigen-specific immunity—must be determined. In this study, the effects of algae-derived β-glucan supplementation on growth performance, virus neutralising antibody and virus-specific T lymphocytes responses were investigated in pigs. Piglets (n=112 per treatment) were assigned to three treatments including non-supplemented group (control), β-glucan 100 g/ton supplemented group (BG100), and β-glucan 200 g/ton supplemented group (BG200).</p><p>In this study, production performance of pigs was not found to be different between the experimental groups. Pigs supplemented with β-glucan exhibited high levels of classical swine fever virus (CSFV)-specific producing T lymphocytes and neutralising antibody titer, compared to the control group. Interestingly, supplementation of β-glucan significantly enhanced porcine reproductive and respiratory syndrome virus (PRRSV)-specific interferon-gamma (IFN-γ) producing T lymphocytes, including CD4<sup>+</sup>, CD8<sup>+</sup>, and CD4<sup>+</sup>CD8<sup>+</sup> T lymphocyte subpopulations. Moreover, PRRS modified live vaccine (MLV) viremia was reduced in earlier for β-glucan-supplemented pigs compared to the control group. The findings indicate that the algae-derived β-glucan possesses biological potential as an immunomodulatory substance to enhance antiviral immunity, which may contribute to disease resistance in pigs.</p></div>","PeriodicalId":23505,"journal":{"name":"Veterinary journal","volume":"306 ","pages":"Article 106182"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090023324001217","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Algae-derived β-glucan has been widely used as a feed additive in the swine industry. The supplementation of β-glucan aims to improve growth performance and modulate the immunity of pigs. However, the potential effects of supplementing β-glucan from algae on immune responses in pigs—specifically antigen-specific immunity—must be determined. In this study, the effects of algae-derived β-glucan supplementation on growth performance, virus neutralising antibody and virus-specific T lymphocytes responses were investigated in pigs. Piglets (n=112 per treatment) were assigned to three treatments including non-supplemented group (control), β-glucan 100 g/ton supplemented group (BG100), and β-glucan 200 g/ton supplemented group (BG200).
In this study, production performance of pigs was not found to be different between the experimental groups. Pigs supplemented with β-glucan exhibited high levels of classical swine fever virus (CSFV)-specific producing T lymphocytes and neutralising antibody titer, compared to the control group. Interestingly, supplementation of β-glucan significantly enhanced porcine reproductive and respiratory syndrome virus (PRRSV)-specific interferon-gamma (IFN-γ) producing T lymphocytes, including CD4+, CD8+, and CD4+CD8+ T lymphocyte subpopulations. Moreover, PRRS modified live vaccine (MLV) viremia was reduced in earlier for β-glucan-supplemented pigs compared to the control group. The findings indicate that the algae-derived β-glucan possesses biological potential as an immunomodulatory substance to enhance antiviral immunity, which may contribute to disease resistance in pigs.
期刊介绍:
The Veterinary Journal (established 1875) publishes worldwide contributions on all aspects of veterinary science and its related subjects. It provides regular book reviews and a short communications section. The journal regularly commissions topical reviews and commentaries on features of major importance. Research areas include infectious diseases, applied biochemistry, parasitology, endocrinology, microbiology, immunology, pathology, pharmacology, physiology, molecular biology, immunogenetics, surgery, ophthalmology, dermatology and oncology.