Covalent organic frameworks in tribology - A perspective

IF 15.9 1区 化学 Q1 CHEMISTRY, PHYSICAL Advances in Colloid and Interface Science Pub Date : 2024-06-17 DOI:10.1016/j.cis.2024.103228
Isadora Berlanga , Andreas Rosenkranz
{"title":"Covalent organic frameworks in tribology - A perspective","authors":"Isadora Berlanga ,&nbsp;Andreas Rosenkranz","doi":"10.1016/j.cis.2024.103228","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional covalent organic frameworks (2D COFs) are an emerging class of crystalline porous materials formed through covalent bonds between organic building blocks. COFs uniquely combine a large surface area, an excellent stability, numerous abundant active sites, and tunable functionalities, thus making them highly attractive for numerous applications. Especially, their abundant active sites and weak interlayer interaction make these materials promising candidates for tribological research. Recently, notable attention has been paid to COFs as lubricant additives due to their excellent tribological performance. Our review aims at critically summarizing the state-of-art developments of 2D COFs in tribology. We discuss their structural and functional design principles, as well as synthetic strategies with a special focus on tribology. The generation of COF thin films is also assessed in detail, which can alleviate their most challenging drawbacks for this application. Subsequently, we analyze the existing state-of-the-art regarding the usage of COFs as lubricant additives, self-lubrication composite coatings, and solid lubricants at the nanoscale. Finally, critical challenges and future trends of 2D COFs in tribology are outlined to initiate and boost new research activities in this exciting field.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"331 ","pages":"Article 103228"},"PeriodicalIF":15.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624001519","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional covalent organic frameworks (2D COFs) are an emerging class of crystalline porous materials formed through covalent bonds between organic building blocks. COFs uniquely combine a large surface area, an excellent stability, numerous abundant active sites, and tunable functionalities, thus making them highly attractive for numerous applications. Especially, their abundant active sites and weak interlayer interaction make these materials promising candidates for tribological research. Recently, notable attention has been paid to COFs as lubricant additives due to their excellent tribological performance. Our review aims at critically summarizing the state-of-art developments of 2D COFs in tribology. We discuss their structural and functional design principles, as well as synthetic strategies with a special focus on tribology. The generation of COF thin films is also assessed in detail, which can alleviate their most challenging drawbacks for this application. Subsequently, we analyze the existing state-of-the-art regarding the usage of COFs as lubricant additives, self-lubrication composite coatings, and solid lubricants at the nanoscale. Finally, critical challenges and future trends of 2D COFs in tribology are outlined to initiate and boost new research activities in this exciting field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
摩擦学中的共价有机框架--透视
二维共价有机框架(2D COFs)是一类新兴的结晶多孔材料,通过有机结构单元之间的共价键形成。二维共价有机框架具有独特的大表面积、优异的稳定性、大量丰富的活性位点和可调的功能性,因此在许多应用领域都极具吸引力。尤其是其丰富的活性位点和微弱的层间相互作用,使这些材料成为摩擦学研究的理想候选材料。最近,由于 COFs 具有优异的摩擦学性能,人们开始关注将其作为润滑油添加剂。我们的综述旨在批判性地总结二维 COF 在摩擦学方面的最新发展。我们讨论了它们的结构和功能设计原理,以及合成策略,并特别关注摩擦学。我们还详细评估了 COF 薄膜的生成过程,这可以减轻其在摩擦学应用中最具挑战性的缺点。随后,我们分析了将 COF 用作润滑剂添加剂、自润滑复合涂层和纳米级固体润滑剂的现有先进技术。最后,我们概述了二维 COFs 在摩擦学中的关键挑战和未来趋势,以启动和推动这一激动人心领域的新研究活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
期刊最新文献
Genetically modified organoids for tissue engineering and regenerative medicine Recent achievements and performance of nanomaterials in microwave absorption and electromagnetic shielding Viscoelastic properties of colloidal systems with attractive solid particles at low concentration: A review, new results and interpretations Biohybrid nano-platforms manifesting effective cancer therapy: Fabrication, characterization, challenges and clinical perspective Cellulose-based functional textiles through surface nano-engineering with MXene and MXene-based composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1