Alexander Gioia , Theresa Libera , Garret Burks , Sara Arena , Renee N. Hamel , Lisa A. Zukowski
{"title":"The effect of virtual reality treadmill training on obstacle crossing parameters in older adults","authors":"Alexander Gioia , Theresa Libera , Garret Burks , Sara Arena , Renee N. Hamel , Lisa A. Zukowski","doi":"10.1016/j.humov.2024.103247","DOIUrl":null,"url":null,"abstract":"<div><p>With increased age, walking without tripping requires greater cognitive demand. Therefore, it may be beneficial for training interventions to address and incorporate aspects of cognitive load. The purpose of this study was to compare a semi-immersive virtual reality treadmill training (VRTT) and conventional treadmill training (CTT) on obstacle clearance and trip hazard in older adults. Obstacle clearance parameters were measured with foot-mounted inertial measurement units (IMUs) and a Zeno pressure walkway. All data were processed and analyzed through custom Matlab scripts. Obstacle step height mean decreased <em>(p</em> = .003) in the lead limb following both training interventions. Additional significant changes were found in pre- and post-obstacle distance mean following both training interventions. Furthermore, significant correlations were found between demographic, cognitive, and functional mobility assessments and changes in dependent measures. The findings suggest that both the VRTT and CTT interventions may provide a reduction in trip risk in older adults, although through different methods.</p></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":"96 ","pages":"Article 103247"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167945724000708","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
With increased age, walking without tripping requires greater cognitive demand. Therefore, it may be beneficial for training interventions to address and incorporate aspects of cognitive load. The purpose of this study was to compare a semi-immersive virtual reality treadmill training (VRTT) and conventional treadmill training (CTT) on obstacle clearance and trip hazard in older adults. Obstacle clearance parameters were measured with foot-mounted inertial measurement units (IMUs) and a Zeno pressure walkway. All data were processed and analyzed through custom Matlab scripts. Obstacle step height mean decreased (p = .003) in the lead limb following both training interventions. Additional significant changes were found in pre- and post-obstacle distance mean following both training interventions. Furthermore, significant correlations were found between demographic, cognitive, and functional mobility assessments and changes in dependent measures. The findings suggest that both the VRTT and CTT interventions may provide a reduction in trip risk in older adults, although through different methods.
期刊介绍:
Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome.
These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."