Yuxuan Li , Fangfang Li , Jiawen Guo , Xinhua He , Xinxin Gao , Min Wu
{"title":"Preferential extraction of degraded organic matter and mineral protection of aromatic structures based on molecular marker analysis","authors":"Yuxuan Li , Fangfang Li , Jiawen Guo , Xinhua He , Xinxin Gao , Min Wu","doi":"10.1016/j.apgeochem.2024.106081","DOIUrl":null,"url":null,"abstract":"<div><p>The humic fractions were sequentially extracted from soils to study the heterogenous properties of soil organic matter (SOM). However, the bulk characteristics of these samples, such as elemental compositions and functional groups, could not fully reveal their diverse compositions. We sequentially extracted humic acids (HAs) from a sediment, and analyzed its molecular markers (benzene polycarboxylic acids (BPCAs), lignin-derived phenols, free lipids and bound lipids) to illustrate the diverse compositions of SOM. Our results suggested that the investigated HAs were derived from terrestrial C<sub>3</sub> plants as reflected by the range of their δ<sup>13</sup>C values (−27.08 ‰ in HA1 to −27.85 ‰ in HA6), more specifically, non-woody tissue of angiosperm and belowground part as suggested by lignin and lipid markers. With the increasing times of extraction, the relative abundances of lignin-derived phenols, free lipids, and bound lipids increased, while those of the condensed aromatics (as indicated by BPCAs) decreased. We also observed that with the increasing times of extraction, the carbon preference index (CPI) increased, the ratios of acids to aldehydes of vanilly units (Ad/Al)v and δ<sup>13</sup>C of HAs decreased, suggesting that the extensively degraded organic compositions were selectively extracted because of their favored dissolution. Our results emphasize that the complete extraction of organic compositions is essential to ensure reliable analysis on SOM properties and turnover. The distribution of individual BPCAs suggested that the highly condensed aromatics were preferentially extracted. These might be attributed to the less condensed aromatics were more strongly associated with mineral particles, which is important for the protection of aromatic carbons in the environment.</p></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"170 ","pages":"Article 106081"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292724001860","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The humic fractions were sequentially extracted from soils to study the heterogenous properties of soil organic matter (SOM). However, the bulk characteristics of these samples, such as elemental compositions and functional groups, could not fully reveal their diverse compositions. We sequentially extracted humic acids (HAs) from a sediment, and analyzed its molecular markers (benzene polycarboxylic acids (BPCAs), lignin-derived phenols, free lipids and bound lipids) to illustrate the diverse compositions of SOM. Our results suggested that the investigated HAs were derived from terrestrial C3 plants as reflected by the range of their δ13C values (−27.08 ‰ in HA1 to −27.85 ‰ in HA6), more specifically, non-woody tissue of angiosperm and belowground part as suggested by lignin and lipid markers. With the increasing times of extraction, the relative abundances of lignin-derived phenols, free lipids, and bound lipids increased, while those of the condensed aromatics (as indicated by BPCAs) decreased. We also observed that with the increasing times of extraction, the carbon preference index (CPI) increased, the ratios of acids to aldehydes of vanilly units (Ad/Al)v and δ13C of HAs decreased, suggesting that the extensively degraded organic compositions were selectively extracted because of their favored dissolution. Our results emphasize that the complete extraction of organic compositions is essential to ensure reliable analysis on SOM properties and turnover. The distribution of individual BPCAs suggested that the highly condensed aromatics were preferentially extracted. These might be attributed to the less condensed aromatics were more strongly associated with mineral particles, which is important for the protection of aromatic carbons in the environment.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.