R. Blaine McCleskey , Charles A. Cravotta III , Matthew P. Miller , Tanner W. Chapin , Fred Tillman , Gabrielle L. Keith
{"title":"Specific conductance and water type as a proxy model for salinity and total dissolved solids measurements in the Upper Colorado River Basin","authors":"R. Blaine McCleskey , Charles A. Cravotta III , Matthew P. Miller , Tanner W. Chapin , Fred Tillman , Gabrielle L. Keith","doi":"10.1016/j.apgeochem.2025.106358","DOIUrl":null,"url":null,"abstract":"<div><div>Salinity levels in streams and tributaries of the Colorado River Basin have been a major concern for the United States and Mexico for over 50 years as the water is used by millions of people for domestic and industrial purposes. Recently, the United States Geological Survey expanded stream monitoring networks including the number of sites where continuous (15-min) specific conductance is measured in the Colorado River Headwaters and Gunnison River Basin located east of the Colorado-Utah state line (hereafter, UCOL). The purpose of this study is to apply a proxy method to determine salinity and total dissolved solids concentrations from specific conductance and major-ion water type that is applicable to monitoring sites in the UCOL. Within the UCOL, carbonate rich waters originate from high-elevation mountain regions in the eastern UCOL, calcium sulfate rich waters are mainly found in the western half of the UCOL including the Gunnison River Basin, and waters of variable composition are found along the lower reaches of the Colorado River and Eagle River. It was found that the chemistry of sites with variable composition changes seasonally and is impacted by both geogenic and anthropogenic processes, potentially including seasonal application of deicing road salt. The specific conductance – water type proxy can be used to reliably (±10 %) predict salinity and total dissolved solids at 66 monitoring sites in the UCOL. The method is rapid, can generate high-resolution measurements, is cost-effective, and greatly expands the utility of specific conductance measurements. Furthermore, the high-resolution estimates provide an accurate approach to determining long-term salinity loads as short-term events are accurately accounted for.</div></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"184 ","pages":"Article 106358"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292725000812","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Salinity levels in streams and tributaries of the Colorado River Basin have been a major concern for the United States and Mexico for over 50 years as the water is used by millions of people for domestic and industrial purposes. Recently, the United States Geological Survey expanded stream monitoring networks including the number of sites where continuous (15-min) specific conductance is measured in the Colorado River Headwaters and Gunnison River Basin located east of the Colorado-Utah state line (hereafter, UCOL). The purpose of this study is to apply a proxy method to determine salinity and total dissolved solids concentrations from specific conductance and major-ion water type that is applicable to monitoring sites in the UCOL. Within the UCOL, carbonate rich waters originate from high-elevation mountain regions in the eastern UCOL, calcium sulfate rich waters are mainly found in the western half of the UCOL including the Gunnison River Basin, and waters of variable composition are found along the lower reaches of the Colorado River and Eagle River. It was found that the chemistry of sites with variable composition changes seasonally and is impacted by both geogenic and anthropogenic processes, potentially including seasonal application of deicing road salt. The specific conductance – water type proxy can be used to reliably (±10 %) predict salinity and total dissolved solids at 66 monitoring sites in the UCOL. The method is rapid, can generate high-resolution measurements, is cost-effective, and greatly expands the utility of specific conductance measurements. Furthermore, the high-resolution estimates provide an accurate approach to determining long-term salinity loads as short-term events are accurately accounted for.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.