A. Grespi , A. Larsson , G. Abbondanza , J. Eidhagen , D. Gajdek , J. Manidi , A. Tayal , J. Pan , L.R. Merte , E. Lundgren
{"title":"Probing the electrode-liquid interface using operando total-reflection X-ray absorption spectroscopy","authors":"A. Grespi , A. Larsson , G. Abbondanza , J. Eidhagen , D. Gajdek , J. Manidi , A. Tayal , J. Pan , L.R. Merte , E. Lundgren","doi":"10.1016/j.susc.2024.122538","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional methods to study electrochemical (EC) processes, although successful, are based on current/voltage measurements, providing information about performances rather than offering a direct observation of chemical and structural changes occurring at the electrode surface. These processes are localized at the electrode-electrolyte interface, the structure of which is the main determinant of their behavior, but most surface sensitive experimental techniques are limited to <em>ex situ</em> conditions, owing to the need for an ultra-high vacuum environment. In this contribution, we report <em>operando</em> X-ray absorption spectroscopy in total external reflection geometry (Refle-XAFS) at P64 beamline (DESY, Hamburg), using a simple and versatile EC flow cell designed for multimodal surface sensitive studies with hard X-ray scattering and spectroscopy techniques. We show that the Refle-XAFS method can be used to study chemical surface changes of industrial alloys and model electrodes in harsh electrochemical environments, without being limited to thin film samples. The surface passive film development and breakdown of a corrosion-resistant Ni-Cr-Mo alloy and the electro-oxidation of polycrystalline gold (poly-Au), relevant for fundamental studies on water electrolysis, were investigated. Despite the strong attenuation of the beam by the electrolyte and the PEEK walls of the EC cell, nanoscale surface oxide films were detected using beam energies down to 8 keV. The passivity breakdown region of Ni alloy 59 in 1 M NaCl at pH 7 and pH 12 was identified, showing differences in the composition of the surface oxides during anodic polarization. The electro-oxidation of poly-Au in 0.05 M H<sub>2</sub>SO<sub>4</sub> was observed, showing a progression from two-dimensional Au<sup>1+/3+</sup> to three-dimensional thick Au<sup>3+</sup> surface oxide/hydroxide during OER.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003960282400089X/pdfft?md5=14bb2737a7cfd4a31739ee94897263b5&pid=1-s2.0-S003960282400089X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003960282400089X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional methods to study electrochemical (EC) processes, although successful, are based on current/voltage measurements, providing information about performances rather than offering a direct observation of chemical and structural changes occurring at the electrode surface. These processes are localized at the electrode-electrolyte interface, the structure of which is the main determinant of their behavior, but most surface sensitive experimental techniques are limited to ex situ conditions, owing to the need for an ultra-high vacuum environment. In this contribution, we report operando X-ray absorption spectroscopy in total external reflection geometry (Refle-XAFS) at P64 beamline (DESY, Hamburg), using a simple and versatile EC flow cell designed for multimodal surface sensitive studies with hard X-ray scattering and spectroscopy techniques. We show that the Refle-XAFS method can be used to study chemical surface changes of industrial alloys and model electrodes in harsh electrochemical environments, without being limited to thin film samples. The surface passive film development and breakdown of a corrosion-resistant Ni-Cr-Mo alloy and the electro-oxidation of polycrystalline gold (poly-Au), relevant for fundamental studies on water electrolysis, were investigated. Despite the strong attenuation of the beam by the electrolyte and the PEEK walls of the EC cell, nanoscale surface oxide films were detected using beam energies down to 8 keV. The passivity breakdown region of Ni alloy 59 in 1 M NaCl at pH 7 and pH 12 was identified, showing differences in the composition of the surface oxides during anodic polarization. The electro-oxidation of poly-Au in 0.05 M H2SO4 was observed, showing a progression from two-dimensional Au1+/3+ to three-dimensional thick Au3+ surface oxide/hydroxide during OER.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.