Green approaches for biofilm eradication: Enhancing cleaning efficiency

IF 1.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Food Safety Pub Date : 2024-06-18 DOI:10.1111/jfs.13149
Samah Mechmechani, Piyush Kumar Jha, Layal Karam, Heni Dallagi
{"title":"Green approaches for biofilm eradication: Enhancing cleaning efficiency","authors":"Samah Mechmechani,&nbsp;Piyush Kumar Jha,&nbsp;Layal Karam,&nbsp;Heni Dallagi","doi":"10.1111/jfs.13149","DOIUrl":null,"url":null,"abstract":"<p>Cleaning up biocontamination from surfaces is a critical aspect of maintaining a hygienic environment. Traditional cleaning methods often fall short when it comes to eliminating persistent biofilms and resilient bacteria. In recent years, alternative approaches utilizing antibiofilm enzymes, bacteriophages, essential oils (EOs), antibacterial peptides, and biosurfactants have emerged as promising strategies to combat biocontamination. This article explores the efficiency of these agents in targeting and eradicating biofilms, highlighting their mechanisms of action and potential applications. By leveraging the unique properties of these materials, we can enhance cleaning practices and improve public health outcomes by effectively eliminating biocontamination from various surfaces.</p>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13149","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cleaning up biocontamination from surfaces is a critical aspect of maintaining a hygienic environment. Traditional cleaning methods often fall short when it comes to eliminating persistent biofilms and resilient bacteria. In recent years, alternative approaches utilizing antibiofilm enzymes, bacteriophages, essential oils (EOs), antibacterial peptides, and biosurfactants have emerged as promising strategies to combat biocontamination. This article explores the efficiency of these agents in targeting and eradicating biofilms, highlighting their mechanisms of action and potential applications. By leveraging the unique properties of these materials, we can enhance cleaning practices and improve public health outcomes by effectively eliminating biocontamination from various surfaces.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
消除生物膜的绿色方法:提高清洁效率
清除表面的生物污染是保持卫生环境的一个重要方面。传统的清洁方法往往无法消除顽固的生物膜和顽强的细菌。近年来,利用抗生物膜酶、噬菌体、精油 (EO)、抗菌肽和生物表面活性剂的替代方法已成为应对生物污染的有效策略。本文探讨了这些制剂在靶向清除生物膜方面的效率,重点介绍了它们的作用机制和潜在应用。利用这些材料的独特特性,我们可以有效消除各种表面的生物污染,从而改进清洁方法,改善公共卫生成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Food Safety
Journal of Food Safety 工程技术-生物工程与应用微生物
CiteScore
5.30
自引率
0.00%
发文量
69
审稿时长
1 months
期刊介绍: The Journal of Food Safety emphasizes mechanistic studies involving inhibition, injury, and metabolism of food poisoning microorganisms, as well as the regulation of growth and toxin production in both model systems and complex food substrates. It also focuses on pathogens which cause food-borne illness, helping readers understand the factors affecting the initial detection of parasites, their development, transmission, and methods of control and destruction.
期刊最新文献
Cold Plasma and Pulsed Light Inactivates Escherichia coli O157: H7 in Romaine Lettuce and Preserves Produce Quality Ginger Essential Oil Exerts Antibacterial Activity Against Shewanella putrefaciens by Disrupting Cell Structure and Resisting Biofilm Investigation of the Storage Temperature Effect on Phthalate Migration Potential in Vacuum-Packed Fish Fillets Issue Information Epiphytic, Attached, and Internal Escherichia coli O157:H7 Subpopulations Associating With Romaine Lettuce Are Strain-Dependent and Affected by Relative Humidity and Pre- and Postharvest Plant State
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1