Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Atmospheric Chemistry and Physics Pub Date : 2024-06-20 DOI:10.5194/acp-24-7063-2024
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, Thomas Karl
{"title":"Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area","authors":"Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, Thomas Karl","doi":"10.5194/acp-24-7063-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The anthropogenic and biogenic contributions of isoprene, monoterpenes, sesquiterpenes and methanol in an urban area were estimated based on direct eddy covariance flux observations during four campaigns between 2018 and 2021. While these compounds are typically thought to be dominated by biogenic sources on regional and global scales, the role of potentially significant anthropogenic emissions in urban areas has been recently debated. Typical fluxes of isoprene, monoterpenes and sesquiterpenes were on the order of 0.07 ± 0.02, 0.09 and 0.003 nmol m−2 s−1 during spring. During summer, emission fluxes of isoprene, monoterpenes and sesquiterpenes were higher on the order of 0.85 ± 0.09, 0.11 and 0.004 nmol m−2 s−1. It was found that the contribution of the anthropogenic part is strongly seasonally dependent. For isoprene, the anthropogenic fraction can be as high as 64 % in spring but is typically very low < 18 % during the summer season. For monoterpenes, the anthropogenic fraction was estimated to be between 43 % in spring and less than 20 % in summer. With values of 2.8 nmol m−2 s−1 in spring and 3.2 nmol m−2 s−1 in summer, methanol did not exhibit a significant seasonal variation of observed surface fluxes. However, there was a difference in emissions between weekdays and weekends (about 2.3 times higher on weekdays in spring). This suggests that methanol emissions are likely influenced by anthropogenic activities during all seasons.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"48 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/acp-24-7063-2024","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The anthropogenic and biogenic contributions of isoprene, monoterpenes, sesquiterpenes and methanol in an urban area were estimated based on direct eddy covariance flux observations during four campaigns between 2018 and 2021. While these compounds are typically thought to be dominated by biogenic sources on regional and global scales, the role of potentially significant anthropogenic emissions in urban areas has been recently debated. Typical fluxes of isoprene, monoterpenes and sesquiterpenes were on the order of 0.07 ± 0.02, 0.09 and 0.003 nmol m−2 s−1 during spring. During summer, emission fluxes of isoprene, monoterpenes and sesquiterpenes were higher on the order of 0.85 ± 0.09, 0.11 and 0.004 nmol m−2 s−1. It was found that the contribution of the anthropogenic part is strongly seasonally dependent. For isoprene, the anthropogenic fraction can be as high as 64 % in spring but is typically very low < 18 % during the summer season. For monoterpenes, the anthropogenic fraction was estimated to be between 43 % in spring and less than 20 % in summer. With values of 2.8 nmol m−2 s−1 in spring and 3.2 nmol m−2 s−1 in summer, methanol did not exhibit a significant seasonal variation of observed surface fluxes. However, there was a difference in emissions between weekdays and weekends (about 2.3 times higher on weekdays in spring). This suggests that methanol emissions are likely influenced by anthropogenic activities during all seasons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解密城市地区某些非甲烷挥发性有机化合物排放的人为和生物贡献
摘要。根据2018年至2021年期间四次活动的直接涡度协方差通量观测结果,估算了城市地区异戊二烯、单萜烯、倍半萜烯和甲醇的人为和生物贡献。虽然这些化合物通常被认为在区域和全球范围内以生物源为主,但城市地区潜在的大量人为排放所起的作用最近引起了争论。在春季,异戊二烯、单萜烯和倍半萜烯的典型通量依次为 0.07 ± 0.02、0.09 和 0.003 nmol m-2 s-1。在夏季,异戊二烯、单萜烯和倍半萜烯的排放通量较高,依次为 0.85 ± 0.09、0.11 和 0.004 nmol m-2 s-1。研究发现,人为部分的贡献与季节密切相关。异戊二烯的人为部分在春季可高达 64%,但在夏季通常很低,< 18%。据估计,单萜烯的人为部分在春季为 43%,而在夏季则低于 20%。甲醇的观测表面通量在春季为 2.8 nmol m-2 s-1,夏季为 3.2 nmol m-2 s-1,没有明显的季节性变化。不过,平日和周末的甲醇排放量存在差异(春季平日的甲醇排放量约为周末的 2.3 倍)。这表明,甲醇的排放在所有季节都可能受到人为活动的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
期刊最新文献
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1