{"title":"Comparative transcriptome profiling reveals that light coordinates auxin to inhibit adventitious root formation in grapevine","authors":"Yunzhang Yuan, Miao Bai, Peiyi Ni, Yanxia Li, Xinyu Chang, Jingjing He, Guoshun Yang, Shuangjiang Li","doi":"10.1016/j.hpj.2024.02.003","DOIUrl":null,"url":null,"abstract":"Grapevine ( sp.) is one of the most important economic fruit crops all over the world, and the formation of adventitious roots (ARs) is crucial for the vegetative reproduction of grapes. However, studies on the regulatory mechanisms of this process are currently lacking. In this study, we applied an efficient and convenient leave-petiole (LP) system for studying ARs, revealing a significant inhibition of root primordia formation under continuous-light treatment. The results showed that isolated ARs of grapevine were induced and originated from ray cells near the vascular cambium, with the process categorized into induction, initiation, and extension stages. LP samples under light and dark conditions were used for transcriptome sequencing and endogenous hormone measurements at three critical time points of AR formation. A total of 37 155 transcripts were obtained, and 7041 genes showed significantly different expression levels in the petiole. An integrated analysis, including Gene Ontology (GO) enrichment analysis, weighted gene co-expression network analysis (WGCNA), and hormonal content determination, showed that several genes (, , , , , , , etc.) associated with hormone signals, sugar synthesis and transport, reactive oxygen species (ROS) scavenging, cell wall biogenesis, flavonoid biosynthesis, microtubule remodeling, and some transcription factors (HY5, COP1, ERF2, MYB15, etc) played vital roles in light-induced AR formation. A hypothetical model was initially constructed, which illustrated the centrality of auxin in HY5-dependent AR formation and the complex crosstalk among various factors. The results of this study provided abundant genetic resources and a novel perspective for understanding the molecular mechanisms of AR formation in grapevine.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Plant Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.hpj.2024.02.003","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Grapevine ( sp.) is one of the most important economic fruit crops all over the world, and the formation of adventitious roots (ARs) is crucial for the vegetative reproduction of grapes. However, studies on the regulatory mechanisms of this process are currently lacking. In this study, we applied an efficient and convenient leave-petiole (LP) system for studying ARs, revealing a significant inhibition of root primordia formation under continuous-light treatment. The results showed that isolated ARs of grapevine were induced and originated from ray cells near the vascular cambium, with the process categorized into induction, initiation, and extension stages. LP samples under light and dark conditions were used for transcriptome sequencing and endogenous hormone measurements at three critical time points of AR formation. A total of 37 155 transcripts were obtained, and 7041 genes showed significantly different expression levels in the petiole. An integrated analysis, including Gene Ontology (GO) enrichment analysis, weighted gene co-expression network analysis (WGCNA), and hormonal content determination, showed that several genes (, , , , , , , etc.) associated with hormone signals, sugar synthesis and transport, reactive oxygen species (ROS) scavenging, cell wall biogenesis, flavonoid biosynthesis, microtubule remodeling, and some transcription factors (HY5, COP1, ERF2, MYB15, etc) played vital roles in light-induced AR formation. A hypothetical model was initially constructed, which illustrated the centrality of auxin in HY5-dependent AR formation and the complex crosstalk among various factors. The results of this study provided abundant genetic resources and a novel perspective for understanding the molecular mechanisms of AR formation in grapevine.
期刊介绍:
Horticultural Plant Journal (HPJ) is an OPEN ACCESS international journal. HPJ publishes research related to all horticultural plants, including fruits, vegetables, ornamental plants, tea plants, and medicinal plants, etc. The journal covers all aspects of horticultural crop sciences, including germplasm resources, genetics and breeding, tillage and cultivation, physiology and biochemistry, ecology, genomics, biotechnology, plant protection, postharvest processing, etc. Article types include Original research papers, Reviews, and Short communications.