Quantum-Dot-Induced Energy Filtering Effect in Organic Thermoelectric Nanocomposites

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-06-20 DOI:10.1002/aelm.202300814
Daegun Kim, Jimin Kim, Sein Chung, Kilwon Cho
{"title":"Quantum-Dot-Induced Energy Filtering Effect in Organic Thermoelectric Nanocomposites","authors":"Daegun Kim,&nbsp;Jimin Kim,&nbsp;Sein Chung,&nbsp;Kilwon Cho","doi":"10.1002/aelm.202300814","DOIUrl":null,"url":null,"abstract":"<p>Thermoelectric (TE) charge transport in organic TE nanocomposite systems is a critical consideration in designing high-performance TE materials. Here, the relationship between the TE properties and energy structure of conducting polymer/quantum dot (QD) nanocomposites is systematically investigated by developing a potential wall or potential well in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with CdTe QDs. The added QDs are primarily distributed within the electrically insulating PSS shell and act as stepping stones for charge transport between PEDOT-rich grains. The embedded QDs generate an energy-filtering effect, which is induced by both potential wall and potential well states established by the QDs in the PEDOT:PSS films. The induced energy-filtering effect increases the Seebeck coefficient <i>S</i> with limited loss of electrical conductivity <i>σ</i>, thereby overcoming the TE trade-off relation <i>S</i> ∝ <i>σ</i>\n <sup>−1/4</sup>. The energy-filtering effect is optimized by carefully controlling the QD size. The PEDOT:PSS/QD nanocomposite containing the smallest QDs exhibits a power factor of 173.8 µW m<sup>−1</sup> K<sup>−2</sup>, which is 80% larger than the value for the pristine PEDOT:PSS film. This work suggests a strategy for designing TE nanocomposites with improved TE performance and emphasizes the importance of fine-tuning the interfacial energy gap to achieve an effective energy-filtering effect.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"10 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202300814","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202300814","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoelectric (TE) charge transport in organic TE nanocomposite systems is a critical consideration in designing high-performance TE materials. Here, the relationship between the TE properties and energy structure of conducting polymer/quantum dot (QD) nanocomposites is systematically investigated by developing a potential wall or potential well in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with CdTe QDs. The added QDs are primarily distributed within the electrically insulating PSS shell and act as stepping stones for charge transport between PEDOT-rich grains. The embedded QDs generate an energy-filtering effect, which is induced by both potential wall and potential well states established by the QDs in the PEDOT:PSS films. The induced energy-filtering effect increases the Seebeck coefficient S with limited loss of electrical conductivity σ, thereby overcoming the TE trade-off relation Sσ −1/4. The energy-filtering effect is optimized by carefully controlling the QD size. The PEDOT:PSS/QD nanocomposite containing the smallest QDs exhibits a power factor of 173.8 µW m−1 K−2, which is 80% larger than the value for the pristine PEDOT:PSS film. This work suggests a strategy for designing TE nanocomposites with improved TE performance and emphasizes the importance of fine-tuning the interfacial energy gap to achieve an effective energy-filtering effect.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机热电纳米复合材料中的量子点诱导能量过滤效应
有机 TE 纳米复合材料体系中的热电(TE)电荷传输是设计高性能 TE 材料的一个重要考虑因素。在这里,我们通过在聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)中形成带有碲化镉 QD 的势墙或势阱,系统地研究了导电聚合物/量子点 (QD) 纳米复合材料的 TE 特性与能量结构之间的关系。添加的 QDs 主要分布在电绝缘的 PSS 外壳中,是富含 PEDOT 晶粒之间电荷传输的垫脚石。嵌入的 QDs 会产生能量过滤效应,这种效应是由 PEDOT:PSS 薄膜中的 QDs 所建立的电位壁和电位井状态引起的。诱导的能量过滤效应在有限损失电导率 σ 的情况下提高了塞贝克系数 S,从而克服了 TE 权衡关系 S ∝ σ-1/4。通过仔细控制 QD 大小,可以优化能量过滤效果。含有最小 QD 的 PEDOT:PSS/QD 纳米复合材料的功率因数为 173.8 µW m-1 K-2,比原始 PEDOT:PSS 薄膜的值高出 80%。这项工作为设计具有更佳 TE 性能的 TE 纳米复合材料提出了一种策略,并强调了微调界面能隙以实现有效能量过滤效果的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Physical Reservoir Computing Utilizing Ion-Gating Transistors Operating in Electric Double Layer and Redox Mechanisms Single-Cell Membrane Potential Stimulation and Recording by an Electrolyte-Gated Organic Field-Effect Transistor 2D α-In2Se3 Flakes for High Frequency Tunable and Switchable Film Bulk Acoustic Wave Resonators Aqueous Ammonia Sensor with Neuromorphic Detection 3D Nano Hafnium-Based Ferroelectric Memory Vertical Array for High-Density and High-Reliability Logic-In-Memory Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1