Muscle-specific lack of Gfpt1 triggers ER stress to alleviate misfolded protein accumulation.

IF 4 3区 医学 Q2 CELL BIOLOGY Disease Models & Mechanisms Pub Date : 2024-08-01 Epub Date: 2024-07-25 DOI:10.1242/dmm.050768
Ruchen Zhang, Paniz Farshadyeganeh, Bisei Ohkawara, Kazuki Nakajima, Jun-Ichi Takeda, Mikako Ito, Shaochuan Zhang, Yuki Miyasaka, Tamio Ohno, Madoka Mori-Yoshimura, Akio Masuda, Kinji Ohno
{"title":"Muscle-specific lack of Gfpt1 triggers ER stress to alleviate misfolded protein accumulation.","authors":"Ruchen Zhang, Paniz Farshadyeganeh, Bisei Ohkawara, Kazuki Nakajima, Jun-Ichi Takeda, Mikako Ito, Shaochuan Zhang, Yuki Miyasaka, Tamio Ohno, Madoka Mori-Yoshimura, Akio Masuda, Kinji Ohno","doi":"10.1242/dmm.050768","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic variants in GFPT1, encoding a key enzyme to synthesize UDP-N-acetylglucosamine (UDP-GlcNAc), cause congenital myasthenic syndrome (CMS). We made a knock-in (KI) mouse model carrying a frameshift variant in Gfpt1 exon 9, simulating that found in a patient with CMS. As Gfpt1 exon 9 is exclusively expressed in striated muscles, Gfpt1-KI mice were deficient for Gfpt1 only in skeletal muscles. In Gfpt1-KI mice, (1) UDP-HexNAc, CMP-NeuAc and protein O-GlcNAcylation were reduced in skeletal muscles; (2) aged Gfpt1-KI mice showed poor exercise performance and abnormal neuromuscular junction structures; and (3) markers of the unfolded protein response (UPR) were elevated in skeletal muscles. Denervation-mediated enhancement of endoplasmic reticulum (ER) stress in Gfpt1-KI mice facilitated protein folding, ubiquitin-proteasome degradation and apoptosis, whereas autophagy was not induced and protein aggregates were markedly increased. Lack of autophagy was accounted for by enhanced degradation of FoxO1 by increased Xbp1-s/u proteins. Similarly, in Gfpt1-silenced C2C12 myotubes, ER stress exacerbated protein aggregates and activated apoptosis, but autophagy was attenuated. In both skeletal muscles in Gfpt1-KI mice and Gfpt1-silenced C2C12 myotubes, maladaptive UPR failed to eliminate protein aggregates and provoked apoptosis.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.050768","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pathogenic variants in GFPT1, encoding a key enzyme to synthesize UDP-N-acetylglucosamine (UDP-GlcNAc), cause congenital myasthenic syndrome (CMS). We made a knock-in (KI) mouse model carrying a frameshift variant in Gfpt1 exon 9, simulating that found in a patient with CMS. As Gfpt1 exon 9 is exclusively expressed in striated muscles, Gfpt1-KI mice were deficient for Gfpt1 only in skeletal muscles. In Gfpt1-KI mice, (1) UDP-HexNAc, CMP-NeuAc and protein O-GlcNAcylation were reduced in skeletal muscles; (2) aged Gfpt1-KI mice showed poor exercise performance and abnormal neuromuscular junction structures; and (3) markers of the unfolded protein response (UPR) were elevated in skeletal muscles. Denervation-mediated enhancement of endoplasmic reticulum (ER) stress in Gfpt1-KI mice facilitated protein folding, ubiquitin-proteasome degradation and apoptosis, whereas autophagy was not induced and protein aggregates were markedly increased. Lack of autophagy was accounted for by enhanced degradation of FoxO1 by increased Xbp1-s/u proteins. Similarly, in Gfpt1-silenced C2C12 myotubes, ER stress exacerbated protein aggregates and activated apoptosis, but autophagy was attenuated. In both skeletal muscles in Gfpt1-KI mice and Gfpt1-silenced C2C12 myotubes, maladaptive UPR failed to eliminate protein aggregates and provoked apoptosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因敲入小鼠肌肉特异性缺乏 GFPT1 会引发 ER 应激,从而缓解折叠错误的蛋白质。
编码合成 UDP-N-乙酰葡糖胺(UDP-GlcNAc)的关键酶 GFPT1 的致病变体会导致先天性肌无力综合征(CMS)。我们制作了一个基因敲入(KI)小鼠模型,该小鼠携带 Gfpt1 第 9 号外显子的框架移位变体,模拟 CMS 患者。由于 Gfpt1 第 9 外显子只包含在横纹肌中,因此 Gfpt1-KI 小鼠只在骨骼肌中缺乏 Gfpt1。在 Gfpt1-KI 小鼠中,(i) 骨骼肌中的 UDP-HexNAc、CMP-NeuAc 和蛋白质 O-GlcNAcylations 减少;(ii) 老龄 Gfpt1-KI 小鼠的运动表现较差,神经肌肉接头结构异常;(iii) 骨骼肌中的未折叠蛋白反应(UPR)标记升高。Gfpt1-KI 小鼠去神经介导的ER应激增强促进了蛋白质折叠、泛素-蛋白酶体降解和细胞凋亡,而自噬没有被诱导,蛋白质聚集明显增加。Xbp1-s/u蛋白增加导致的FoxO1降解增强是缺乏自噬的原因。同样,在被 Gfpt1 沉默的 C2C12 肌细胞管中,ER 应激加剧了蛋白质聚集并激活了细胞凋亡,但自噬作用却减弱了。在Gfpt1-KI小鼠的骨骼肌和Gfpt1沉默的C2C12肌细胞管中,不适应性UPR未能消除蛋白质聚集并引发细胞凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Disease Models & Mechanisms
Disease Models & Mechanisms 医学-病理学
CiteScore
6.60
自引率
7.00%
发文量
203
审稿时长
6-12 weeks
期刊介绍: Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.
期刊最新文献
The highly metastatic 4T1 breast carcinoma model possesses features of a hybrid epithelial/mesenchymal phenotype. eEF1α2 is required for actin cytoskeleton homeostasis in the aging muscle. Axolotl mandible regeneration occurs through mechanical gap closure and a shared regenerative program with the limb. Compromised COPII vesicle trafficking leads to glycogenic hepatopathy in zebrafish. Sex specific emergence of trisomic Dyrk1a-related skeletal phenotypes in the development of a Down syndrome mouse model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1