Effects of extra potassium supply and rootstocks indicate links between water, solutes and energy in Shiraz grapevines (Vitis vinifera) pericarps.

IF 2.6 4区 生物学 Q2 PLANT SCIENCES Functional Plant Biology Pub Date : 2024-06-01 DOI:10.1071/FP23141
Yin Liu, Stephen Tyerman, Leigh Schmidtke, Suzy Rogiers
{"title":"Effects of extra potassium supply and rootstocks indicate links between water, solutes and energy in Shiraz grapevines (<i>Vitis vinifera</i>) pericarps.","authors":"Yin Liu, Stephen Tyerman, Leigh Schmidtke, Suzy Rogiers","doi":"10.1071/FP23141","DOIUrl":null,"url":null,"abstract":"<p><p>Potassium (K) is essential for the development of grapevines (Vitis vinifera ), accumulating into berries during maturation. Elevated K has been associated with high sugar and low acidity in juice. Characterising the accumulation patterns of K and other components in pericarps treated with various experimental factors may indicate potential regulators of berry K levels. A soil fertiliser trial using nutrient solutions with two K supply rates was conducted on potted Shiraz vines during berry ripening. Doubled-K supply increased L-malic acid content in the early-ripening phase, and increased K and magnesium concentrations in the late-ripening phase. Doubled-K supply reduced the ratio of K to sodium in later ripening phases, suggesting that the accumulation of K relative to sodium was limited in more mature berries supplied with extra K. Pericarp water percentage, sugar, K and ATP were correlated in both treatments, indicating links between hydration, solute transport and energy in maturing berries. In a separate rootstock trial over the two growing seasons, Shiraz scions grafted onto 420-A rootstock produced berries with lower K concentration and content than those grafted onto Ramsey or Ruggeri-140 rootstocks and own-rooted vines. This study demonstrated that the K supply and berry ripening phase impacted the berry K level.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23141","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Potassium (K) is essential for the development of grapevines (Vitis vinifera ), accumulating into berries during maturation. Elevated K has been associated with high sugar and low acidity in juice. Characterising the accumulation patterns of K and other components in pericarps treated with various experimental factors may indicate potential regulators of berry K levels. A soil fertiliser trial using nutrient solutions with two K supply rates was conducted on potted Shiraz vines during berry ripening. Doubled-K supply increased L-malic acid content in the early-ripening phase, and increased K and magnesium concentrations in the late-ripening phase. Doubled-K supply reduced the ratio of K to sodium in later ripening phases, suggesting that the accumulation of K relative to sodium was limited in more mature berries supplied with extra K. Pericarp water percentage, sugar, K and ATP were correlated in both treatments, indicating links between hydration, solute transport and energy in maturing berries. In a separate rootstock trial over the two growing seasons, Shiraz scions grafted onto 420-A rootstock produced berries with lower K concentration and content than those grafted onto Ramsey or Ruggeri-140 rootstocks and own-rooted vines. This study demonstrated that the K supply and berry ripening phase impacted the berry K level.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
额外钾供应和砧木的影响表明了设拉子葡萄(葡萄属)果穗中水分、溶质和能量之间的联系。
钾(K)是葡萄树(Vitis vinifera)生长发育所必需的元素,在成熟过程中会积累到浆果中。钾的升高与果汁中的高糖和低酸度有关。研究经各种试验因素处理的果穗中钾肥和其他成分的积累模式,可能会发现浆果钾肥水平的潜在调节因素。在浆果成熟期间,对盆栽设拉子葡萄树进行了一项土壤肥料试验,使用两种钾供应率的营养液。双倍钾供应量增加了早熟期的左旋苹果酸含量,增加了晚熟期的钾和镁浓度。在两种处理中,果皮水分百分比、糖分、钾和 ATP 都是相关的,这表明成熟浆果中的水合作用、溶质运输和能量之间存在联系。在两个生长季的单独砧木试验中,嫁接到 420-A 砧木上的设拉子接穗结出的浆果的钾浓度和含量低于嫁接到拉姆齐或鲁格瑞 140 砧木上的接穗和自根葡萄树。这项研究表明,钾供应和浆果成熟阶段会影响浆果的钾含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
期刊最新文献
Assessing the efficacy of synthetic compounds foliar sprays in alleviating terminal heat stress in late-sown wheat (Triticum aestivum). Enhancing the productivity and resilience of rice (Oryza sativa) under environmental stress conditions using clustered regularly interspaced short palindromic repeats (CRISPR) technology. The relationship between GABA content and desiccation tolerance at five developmental stages of wheat (Triticum durum) seeds. Escape of etiolated hypocotyls of cotton (Gossypium hirsutum) from the unilateral high intensity blue light after being pulled out from the soil. A small-scale spatial heterogeneity in photochemical reflectance index and intensity of reflected light at 530 nm in pea (Pisum sativum) leaves is sensitive to action of salinization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1