Lipoteichoic Acids Are Essential for Pneumococcal Colonization and Membrane Integrity.

IF 4.7 3区 医学 Q2 IMMUNOLOGY Journal of Innate Immunity Pub Date : 2024-01-01 Epub Date: 2024-06-20 DOI:10.1159/000539934
Max Brendel, Thomas P Kohler, Janine V Neufend, Astrid Puppe, Nicolas Gisch, Sven Hammerschmidt
{"title":"Lipoteichoic Acids Are Essential for Pneumococcal Colonization and Membrane Integrity.","authors":"Max Brendel, Thomas P Kohler, Janine V Neufend, Astrid Puppe, Nicolas Gisch, Sven Hammerschmidt","doi":"10.1159/000539934","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The hydrophilic, polymeric chain of the lipoteichoic acid (LTA) of the Gram-positive pathobiont Streptococcus pneumoniae is covalently linked to the glycosylglycerolipid α-<sc>d</sc>-glucopyranosyl-(1,3)-diacylglycerol by the LTA ligase TacL, leading to its fixation in the cytoplasmic membrane. Pneumococcal LTA, sharing identical repeating units with the wall teichoic acids (WTA), is dispensable for normal growth but required for full virulence in invasive infections.</p><p><strong>Methods: </strong>Mutants deficient in TacL and complemented strains constructed were tested for their growth, resistance against oxidative stress, and susceptibility against antimicrobial peptides. Further, the membrane fluidity of pneumococci, their capability to adhere to lung epithelial cells, and virulence in a Galleria mellonella as well as intranasal mouse infection model were assessed.</p><p><strong>Results: </strong>In the present study, we indicate that LTA is already indispensable for pneumococcal adherence to human nasopharyngeal cells and colonization in an intranasal mouse infection model. Mutants deficient for TacL did not show morphological defects. However, our analysis of pneumococcal membranes in different serotypes showed an altered membrane fluidity and surface protein abundance of lipoproteins in mutants deficient for LTA but not WTA. These mutants had a decreased membrane fluidity, exhibited higher amounts of lipoproteins, and showed an increased susceptibility to antimicrobial peptides. In complemented mutant strains, this defect was fully restored.</p><p><strong>Conclusion: </strong>Taken together, LTA is crucial for colonization and required to effectively protect pneumococci from innate immune defence mechanisms by maintaining the membrane integrity.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":" ","pages":"370-384"},"PeriodicalIF":4.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innate Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000539934","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The hydrophilic, polymeric chain of the lipoteichoic acid (LTA) of the Gram-positive pathobiont Streptococcus pneumoniae is covalently linked to the glycosylglycerolipid α-d-glucopyranosyl-(1,3)-diacylglycerol by the LTA ligase TacL, leading to its fixation in the cytoplasmic membrane. Pneumococcal LTA, sharing identical repeating units with the wall teichoic acids (WTA), is dispensable for normal growth but required for full virulence in invasive infections.

Methods: Mutants deficient in TacL and complemented strains constructed were tested for their growth, resistance against oxidative stress, and susceptibility against antimicrobial peptides. Further, the membrane fluidity of pneumococci, their capability to adhere to lung epithelial cells, and virulence in a Galleria mellonella as well as intranasal mouse infection model were assessed.

Results: In the present study, we indicate that LTA is already indispensable for pneumococcal adherence to human nasopharyngeal cells and colonization in an intranasal mouse infection model. Mutants deficient for TacL did not show morphological defects. However, our analysis of pneumococcal membranes in different serotypes showed an altered membrane fluidity and surface protein abundance of lipoproteins in mutants deficient for LTA but not WTA. These mutants had a decreased membrane fluidity, exhibited higher amounts of lipoproteins, and showed an increased susceptibility to antimicrobial peptides. In complemented mutant strains, this defect was fully restored.

Conclusion: Taken together, LTA is crucial for colonization and required to effectively protect pneumococci from innate immune defence mechanisms by maintaining the membrane integrity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脂联素酸对肺炎球菌的定植和膜完整性至关重要。
导言:革兰氏阳性病原菌肺炎链球菌的亲水性聚合链脂脱落酸(LTA)通过脂脱落酸连接酶 TacL 与糖基甘油脂 -D-glucopyranosyl-(1,3)-diacylglycerol 共价连接,使其固定在细胞质膜上。肺炎球菌的 LTA 与细胞壁上的 Teichoic acids 有相同的重复单位,对正常生长来说是不可或缺的,但在侵袭性感染中则是全病毒性所必需的:方法:对构建的缺乏 TacL 的突变体和补体菌株进行了生长、抗氧化压力和抗菌肽敏感性测试。此外,还评估了肺炎球菌的膜流动性、与肺上皮细胞的粘附能力以及在小鼠鼻内感染模型中的毒力:结果:在本研究中,我们发现LTA对于肺炎球菌粘附到人类鼻咽细胞以及在小鼠鼻内感染模型中定植已经是不可或缺的。缺乏 TacL 的突变体没有表现出形态学缺陷。然而,我们对不同血清型的肺炎球菌膜进行的分析表明,缺乏 LTA 而非 WTA 的突变体的膜流动性和脂蛋白表面蛋白丰度发生了改变。这些突变体的膜流动性降低,脂蛋白含量增加,对抗菌肽的敏感性增加。在补体突变株中,这一缺陷完全恢复:综上所述,LTA 对肺炎球菌的定植至关重要,并通过维持膜的完整性有效保护肺炎球菌不受先天性免疫防御机制的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Innate Immunity
Journal of Innate Immunity 医学-免疫学
CiteScore
10.50
自引率
1.90%
发文量
35
审稿时长
7.5 months
期刊介绍: The ''Journal of Innate Immunity'' is a bimonthly journal covering all aspects within the area of innate immunity, including evolution of the immune system, molecular biology of cells involved in innate immunity, pattern recognition and signals of ‘danger’, microbial corruption, host response and inflammation, mucosal immunity, complement and coagulation, sepsis and septic shock, molecular genomics, and development of immunotherapies. The journal publishes original research articles, short communications, reviews, commentaries and letters to the editors. In addition to regular papers, some issues feature a special section with a thematic focus.
期刊最新文献
Differential Effector Function of Tissue-Specific Natural Killer Cells Against Lung Tumors. C4b-Binding Protein and Factor H Inhibit Inflammasome Activation during Group A Streptococci Infection in Human Cells. Inhibition of WNK kinases in NK cells disrupts cellular osmoregulation and control of tumor metastasis. Association of Vitamin D with Severity and Outcome of COVID-19: Clinical and Experimental Evidence. Metabolism Shapes Immune Responses to Staphylococcus aureus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1