Zerick Terrell Dunbar, Salvador González-Ochoa, Thanigaivelan Kanagasabai, Alla Ivanova, Anil Shanker
Introduction: Natural killer (NK) cells are innate lymphoid cells capable of directly killing target cells while modulating immune effector responses. Despite their multifunctional capacities, a limited understanding of their plasticity and heterogeneity has impeded progress in developing effective NK cell-based cancer therapies. In this study, we investigated NK cell tissue heterogeneity in relation to their phenotype and effector functions against lung tumors.
Methods: Using hanging-drop tumor spheroid and subcutaneously established LL/2 lung tumor models, we examined NK cell receptor diversity and its correlation with tissue-specific cytotoxicity through multiparametric flow cytometry, fluorescence imaging, and cytotoxicity assays.
Results: We identified distinct patterns of cell surface receptor expression on tissue-specific NK cells that are crucial for antitumor activity. Linear regression mathematical analyses further revealed significant positive correlations between activation-associated cell surface receptors and cytotoxic capacity in NK cells from tissues such as the liver and bone marrow.
Conclusion: These findings underscore the differential effector capacities of NK cells from distinct tissues, even prior to exposure to LL/2 tumor cells. This highlights the significance of tissue-specific NK cell heterogeneity and its impact on their antitumor cytotoxicity. Recognizing these distinct tissue-specific receptor expression patterns will be instrumental in developing more efficacious NK cell-based cancer treatments.
简介自然杀伤(NK)细胞是一种先天性淋巴细胞,能够直接杀伤靶细胞,同时调节免疫效应反应。尽管NK细胞具有多种功能,但由于对其可塑性和异质性的了解有限,阻碍了开发基于NK细胞的有效癌症疗法的进展。在这项研究中,我们研究了NK细胞组织异质性与其表型和对肺部肿瘤的效应功能的关系:方法:我们使用悬滴肿瘤球和皮下建立的 LL/2 肺肿瘤模型,通过多参数流式细胞术、荧光成像和细胞毒性测定,研究了 NK 细胞受体多样性及其与组织特异性细胞毒性的相关性:结果:我们在组织特异性 NK 细胞上发现了对抗肿瘤活性至关重要的细胞表面受体表达的不同模式。线性回归数学分析进一步揭示了来自肝脏和骨髓等组织的 NK 细胞活化相关细胞表面受体与细胞毒性能力之间的显著正相关关系:这些发现强调了来自不同组织的 NK 细胞即使在暴露于 LL/2 肿瘤细胞之前也具有不同的效应能力。这凸显了组织特异性 NK 细胞异质性的重要性及其对其抗肿瘤细胞毒性的影响。识别这些不同组织特异性受体的表达模式将有助于开发更有效的基于 NK 细胞的癌症治疗方法。
{"title":"Differential Effector Function of Tissue-Specific Natural Killer Cells Against Lung Tumors.","authors":"Zerick Terrell Dunbar, Salvador González-Ochoa, Thanigaivelan Kanagasabai, Alla Ivanova, Anil Shanker","doi":"10.1159/000542078","DOIUrl":"https://doi.org/10.1159/000542078","url":null,"abstract":"<p><strong>Introduction: </strong>Natural killer (NK) cells are innate lymphoid cells capable of directly killing target cells while modulating immune effector responses. Despite their multifunctional capacities, a limited understanding of their plasticity and heterogeneity has impeded progress in developing effective NK cell-based cancer therapies. In this study, we investigated NK cell tissue heterogeneity in relation to their phenotype and effector functions against lung tumors.</p><p><strong>Methods: </strong>Using hanging-drop tumor spheroid and subcutaneously established LL/2 lung tumor models, we examined NK cell receptor diversity and its correlation with tissue-specific cytotoxicity through multiparametric flow cytometry, fluorescence imaging, and cytotoxicity assays.</p><p><strong>Results: </strong>We identified distinct patterns of cell surface receptor expression on tissue-specific NK cells that are crucial for antitumor activity. Linear regression mathematical analyses further revealed significant positive correlations between activation-associated cell surface receptors and cytotoxic capacity in NK cells from tissues such as the liver and bone marrow.</p><p><strong>Conclusion: </strong>These findings underscore the differential effector capacities of NK cells from distinct tissues, even prior to exposure to LL/2 tumor cells. This highlights the significance of tissue-specific NK cell heterogeneity and its impact on their antitumor cytotoxicity. Recognizing these distinct tissue-specific receptor expression patterns will be instrumental in developing more efficacious NK cell-based cancer treatments.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":" ","pages":"1-27"},"PeriodicalIF":4.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Serena Bettoni, Mateusz Dziedzic, Damien Bierschenk, Maja Chrobak, Michal Magda, Maisem Laabei, Ben C King, Kristian Riesbeck, Anna M Blom
Introduction: Streptococcus pyogenes (Group A Streptococcus; GAS) is a pathogen that causes over half a million deaths annually worldwide. Human immune cells respond to GAS infection by activating the NLRP3 inflammasome that leads to pro-inflammatory cytokines release which acts to control infection. We investigated the role of C4b-binding protein (C4BP) and Factor H (FH) in the inflammasome response to GAS, as they are recruited by GAS to prevent complement deposition and limit phagocytosis.
Methods: Inflammasome response was investigated using isolated primary human cells and the GAS-AP1 strain. Cytokine responses were evaluated by ELISA. C4BP internalisation was investigated using confocal microscopy. Western blotting was used to evaluate the activation of NLRP3 inflammasome components.
Results: IL-1β release, induced by GAS-AP1, was inhibited by FH which interferes with priming of human cells. In contrast, C4BP restricted the IL-1β response with no effect on cell priming. C4BP was engulfed by cells together with bacteria and excluded from low-pH vesicles, but localised within the cytosol and near the ASC speck inflammasome complex. C4BP did not inhibit either the inflammasome complex assembly or caspase-1 activation. However, C4BP limited the cleavage of gasderminD N-terminal fragments by interfering with caspase-1 enzymatic activity.
Conclusion: Our results provide new insights on the effect of FH and internalised C4BP to control GAS sensing by inflammasomes.
导言:化脓性链球菌(A 组链球菌;GAS)是一种病原体,每年导致全球 50 多万人死亡。人类免疫细胞对 GAS 感染的反应是激活 NLRP3 炎性体,导致促炎细胞因子的释放,从而起到控制感染的作用。我们研究了 C4b 结合蛋白(C4BP)和 H 因子(FH)在炎性组对 GAS 的反应中的作用,因为它们被 GAS 募集来阻止补体沉积和限制吞噬作用:方法:使用分离的人类原代细胞和 GAS-AP1 菌株研究炎症小体的反应。细胞因子反应通过 ELISA 进行评估。使用共聚焦显微镜研究了 C4BP 的内化情况。用 Western 印迹法评估 NLRP3 炎症小体成分的激活情况:结果:GAS-AP1 诱导的 IL-1β 释放受到 FH 的抑制,FH 会干扰人体细胞的引物。与此相反,C4BP 限制了 IL-1β 的反应,但对细胞引物没有影响。C4BP 与细菌一起被细胞吞噬,并被排除在低pH小泡之外,但却定位于细胞膜内和 ASC斑点炎性体复合体附近。C4BP 既不抑制炎症小体复合物的组装,也不抑制 caspase-1 的激活。然而,C4BP 通过干扰 caspase-1 的酶活性限制了 gasderminD N 端片段的裂解:我们的研究结果提供了关于 FH 和内化 C4BP 控制炎症小体感知 GAS 的作用的新见解。
{"title":"C4b-Binding Protein and Factor H Inhibit Inflammasome Activation during Group A Streptococci Infection in Human Cells.","authors":"Serena Bettoni, Mateusz Dziedzic, Damien Bierschenk, Maja Chrobak, Michal Magda, Maisem Laabei, Ben C King, Kristian Riesbeck, Anna M Blom","doi":"10.1159/000542434","DOIUrl":"https://doi.org/10.1159/000542434","url":null,"abstract":"<p><strong>Introduction: </strong>Streptococcus pyogenes (Group A Streptococcus; GAS) is a pathogen that causes over half a million deaths annually worldwide. Human immune cells respond to GAS infection by activating the NLRP3 inflammasome that leads to pro-inflammatory cytokines release which acts to control infection. We investigated the role of C4b-binding protein (C4BP) and Factor H (FH) in the inflammasome response to GAS, as they are recruited by GAS to prevent complement deposition and limit phagocytosis.</p><p><strong>Methods: </strong>Inflammasome response was investigated using isolated primary human cells and the GAS-AP1 strain. Cytokine responses were evaluated by ELISA. C4BP internalisation was investigated using confocal microscopy. Western blotting was used to evaluate the activation of NLRP3 inflammasome components.</p><p><strong>Results: </strong>IL-1β release, induced by GAS-AP1, was inhibited by FH which interferes with priming of human cells. In contrast, C4BP restricted the IL-1β response with no effect on cell priming. C4BP was engulfed by cells together with bacteria and excluded from low-pH vesicles, but localised within the cytosol and near the ASC speck inflammasome complex. C4BP did not inhibit either the inflammasome complex assembly or caspase-1 activation. However, C4BP limited the cleavage of gasderminD N-terminal fragments by interfering with caspase-1 enzymatic activity.</p><p><strong>Conclusion: </strong>Our results provide new insights on the effect of FH and internalised C4BP to control GAS sensing by inflammasomes.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":" ","pages":"1-25"},"PeriodicalIF":4.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
INTRODUCTIONThe serine/threonine With-No-Lysine (WNK) kinase family function in blood pressure control, electrolyte homeostasis, and cellular osmoregulation. These kinases and their downstream effectors are considered promising therapeutic targets in hypertension and stroke. However, the role of WNK kinases in immune cells remains poorly understood.METHODSUsing the small-molecule WNK kinase inhibitors WNK463 and WNK-IN-11, we investigated how WNK kinase inhibition affects natural killer (NK) cell physiology.RESULTSWNK kinase inhibition with WNK463 or WNK-IN-11 significantly decreased IL-2-activated NK-cell volume, motility, and cytolytic activity. Treatment of NK cells with these inhibitors induced autophagy by activating AMPK and inhibiting mTOR signaling. Moreover, WNK kinase inhibition increased phosphorylation of Akt and c-Myc by misaligning activity of activating kinases and inhibitory phosphatases. Treatment of tumor-bearing mice with WNK463 impaired tumor metastasis control by adoptively transferred NK cells.CONCLUSIONThe catalytic activity of WNK kinases has a critical role of multiple aspects of NK cell physiology and their pharmacologic inhibition negatively impacts NK cell function.
导言丝氨酸/苏氨酸-赖氨酸(WNK)激酶家族在血压控制、电解质平衡和细胞渗透调节中发挥作用。这些激酶及其下游效应物被认为是治疗高血压和中风的有望靶点。方法我们利用小分子 WNK 激酶抑制剂 WNK463 和 WNK-IN-11,研究了抑制 WNK 激酶如何影响自然杀伤(NK)细胞的生理机能。结果用 WNK463 或 WNK-IN-11 抑制 WNK 激酶会显著降低 IL-2 激活的 NK 细胞的体积、运动性和细胞溶解活性。用这些抑制剂处理 NK 细胞可通过激活 AMPK 和抑制 mTOR 信号转导诱导自噬。此外,WNK 激酶抑制剂通过使激活激酶和抑制磷酸酶的活性错位,增加了 Akt 和 c-Myc 的磷酸化。结论:WNK 激酶的催化活性在 NK 细胞生理的多个方面起着关键作用,对其进行药物抑制会对 NK 细胞的功能产生负面影响。
{"title":"Inhibition of WNK kinases in NK cells disrupts cellular osmoregulation and control of tumor metastasis.","authors":"Ji Sung Kim,John H Kehrl","doi":"10.1159/000540744","DOIUrl":"https://doi.org/10.1159/000540744","url":null,"abstract":"INTRODUCTIONThe serine/threonine With-No-Lysine (WNK) kinase family function in blood pressure control, electrolyte homeostasis, and cellular osmoregulation. These kinases and their downstream effectors are considered promising therapeutic targets in hypertension and stroke. However, the role of WNK kinases in immune cells remains poorly understood.METHODSUsing the small-molecule WNK kinase inhibitors WNK463 and WNK-IN-11, we investigated how WNK kinase inhibition affects natural killer (NK) cell physiology.RESULTSWNK kinase inhibition with WNK463 or WNK-IN-11 significantly decreased IL-2-activated NK-cell volume, motility, and cytolytic activity. Treatment of NK cells with these inhibitors induced autophagy by activating AMPK and inhibiting mTOR signaling. Moreover, WNK kinase inhibition increased phosphorylation of Akt and c-Myc by misaligning activity of activating kinases and inhibitory phosphatases. Treatment of tumor-bearing mice with WNK463 impaired tumor metastasis control by adoptively transferred NK cells.CONCLUSIONThe catalytic activity of WNK kinases has a critical role of multiple aspects of NK cell physiology and their pharmacologic inhibition negatively impacts NK cell function.","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":"2 1","pages":"1-24"},"PeriodicalIF":5.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-01-15DOI: 10.1159/000535541
Na Rong, Xiaohui Wei, Jiangning Liu
Background: Neutrophils are the first line of defense against pathogens. They are divided into multiple subpopulations during development and kill pathogens through various mechanisms. Neutrophils are considered one of the markers of severe COVID-19.
Summary: In-depth research has revealed that neutrophil subpopulations have multiple complex functions. Different subsets of neutrophils play an important role in the progression of COVID-19.
Key messages: In this review, we provide a detailed overview of the developmental processes of neutrophils at different stages and their recruitment and activation after SARS-CoV-2 infection, aiming to elucidate the changes in neutrophil subpopulations, characteristics, and functions after infection and provide a reference for mechanistic research on neutrophil subpopulations in the context of SARS-CoV-2 infection. In addition, we have also summarized research progress on potential targeted drugs for neutrophil immunotherapy, hoping to provide information that aids the development of therapeutic drugs for the clinical treatment of critically ill COVID-19 patients.
{"title":"The Role of Neutrophil in COVID-19: Positive or Negative.","authors":"Na Rong, Xiaohui Wei, Jiangning Liu","doi":"10.1159/000535541","DOIUrl":"10.1159/000535541","url":null,"abstract":"<p><strong>Background: </strong>Neutrophils are the first line of defense against pathogens. They are divided into multiple subpopulations during development and kill pathogens through various mechanisms. Neutrophils are considered one of the markers of severe COVID-19.</p><p><strong>Summary: </strong>In-depth research has revealed that neutrophil subpopulations have multiple complex functions. Different subsets of neutrophils play an important role in the progression of COVID-19.</p><p><strong>Key messages: </strong>In this review, we provide a detailed overview of the developmental processes of neutrophils at different stages and their recruitment and activation after SARS-CoV-2 infection, aiming to elucidate the changes in neutrophil subpopulations, characteristics, and functions after infection and provide a reference for mechanistic research on neutrophil subpopulations in the context of SARS-CoV-2 infection. In addition, we have also summarized research progress on potential targeted drugs for neutrophil immunotherapy, hoping to provide information that aids the development of therapeutic drugs for the clinical treatment of critically ill COVID-19 patients.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":" ","pages":"80-95"},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Toll-like receptors (TLRs) are one of the first pattern recognition receptors found in the innate immune system. The TLR family has 12 members (TLR1-TLR9, TLR11-TLR13) in mice and 10 members (TLR1-TLR10) in humans, with TLR10 being the latest identified.
Summary: Considerable research has been performed on TLRs; however, TLR10 is known as an orphan receptor for the lack of information on its signalling, role, and ligands. Even though there are recent studies pointing towards the potential TLR10 ligands, their function and signalling pathway are yet to be determined.
Key messages: This review gives an insight into recent findings on TLR10's pro- and anti-inflammatory properties, with the goal of outlining existing results and indicating future research topics on this receptor.
{"title":"TLR10: An Intriguing Toll-Like Receptor with Many Unanswered Questions.","authors":"Carolina Rego Rodrigues, Yadu Balachandran, Gurpreet Kaur Aulakh, Baljit Singh","doi":"10.1159/000535523","DOIUrl":"10.1159/000535523","url":null,"abstract":"<p><strong>Background: </strong>Toll-like receptors (TLRs) are one of the first pattern recognition receptors found in the innate immune system. The TLR family has 12 members (TLR1-TLR9, TLR11-TLR13) in mice and 10 members (TLR1-TLR10) in humans, with TLR10 being the latest identified.</p><p><strong>Summary: </strong>Considerable research has been performed on TLRs; however, TLR10 is known as an orphan receptor for the lack of information on its signalling, role, and ligands. Even though there are recent studies pointing towards the potential TLR10 ligands, their function and signalling pathway are yet to be determined.</p><p><strong>Key messages: </strong>This review gives an insight into recent findings on TLR10's pro- and anti-inflammatory properties, with the goal of outlining existing results and indicating future research topics on this receptor.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":" ","pages":"96-104"},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-25DOI: 10.1159/000538282
Mareike D Maler, Sophie Zwick, Carsten Kallfass, Peggy Engelhard, Hexin Shi, Laura Hellig, Pang Zhengyang, Annika Hardt, Gernot Zissel, Zsolt Ruzsics, Willi Jahnen-Dechent, Stefan F Martin, Peter Jess Nielsen, Daiana Stolz, Justyna Lopatecka, Sarah Bastyans, Bruce Beutler, Wolfgang W Schamel, György Fejer, Marina Alexandra Freudenberg
<p><strong>Introduction: </strong>While TLR ligands derived from microbial flora and pathogens are important activators of the innate immune system, a variety of factors such as intracellular bacteria, viruses, and parasites can induce a state of hyperreactivity, causing a dysregulated and potentially life-threatening cytokine over-response upon TLR ligand exposure. Type I interferon (IFN-αβ) is a central mediator in the induction of hypersensitivity and is strongly expressed in splenic conventional dendritic cells (cDC) and marginal zone macrophages (MZM) when mice are infected with adenovirus. This study investigates the ability of adenoviral infection to influence the activation state of the immune system and underlines the importance of considering this state when planning the treatment of patients.</p><p><strong>Methods: </strong>Infection with adenovirus-based vectors (Ad) or pretreatment with recombinant IFN-β was used as a model to study hypersensitivity to lipopolysaccharide (LPS) in mice, murine macrophages, and human blood samples. The TNF-α, IL-6, IFN-αβ, and IL-10 responses induced by LPS after pretreatment were measured. Mouse knockout models for MARCO, IFN-αβR, CD14, IRF3, and IRF7 were used to probe the mechanisms of the hypersensitive reaction.</p><p><strong>Results: </strong>We show that, similar to TNF-α and IL-6 but not IL-10, the induction of IFN-αβ by LPS increases strongly after Ad infection. This is true both in mice and in human blood samples ex vivo, suggesting that the regulatory mechanisms seen in the mouse are also present in humans. In mice, the scavenger receptor MARCO on IFN-αβ-producing cDC and splenic marginal zone macrophages is important for Ad uptake and subsequent cytokine overproduction by LPS. Interestingly, not all IFN-αβ-pretreated macrophage types exposed to LPS exhibit an enhanced TNF-α and IL-6 response. Pretreated alveolar macrophages and alveolar macrophage-like murine cell lines (MPI cells) show enhanced responses, while bone marrow-derived and peritoneal macrophages show a weaker response. This correlates with the respective absence or presence of the anti-inflammatory IL-10 response in these different macrophage types. In contrast, Ad or IFN-β pretreatment enhances the subsequent induction of IFN-αβ in all macrophage types. IRF3 is dispensable for the LPS-induced IFN-αβ overproduction in infected MPI cells and partly dispensable in infected mice, while IRF7 is required. The expression of the LPS co-receptor CD14 is important but not absolutely required for the elicitation of a TNF-α over-response to LPS in Ad-infected mice.</p><p><strong>Conclusion: </strong>Viral infections or application of virus-based vaccines induces type I interferon and can tip the balance of the innate immune system in the direction of hyperreactivity to a subsequent exposure to TLR ligands. The adenoviral model presented here is one example of how multiple factors, both environmental and genetic, affect the physiological r
{"title":"Type I Interferon, Induced by Adenovirus or Adenoviral Vector Infection, Regulates the Cytokine Response to Lipopolysaccharide in a Macrophage Type-Specific Manner.","authors":"Mareike D Maler, Sophie Zwick, Carsten Kallfass, Peggy Engelhard, Hexin Shi, Laura Hellig, Pang Zhengyang, Annika Hardt, Gernot Zissel, Zsolt Ruzsics, Willi Jahnen-Dechent, Stefan F Martin, Peter Jess Nielsen, Daiana Stolz, Justyna Lopatecka, Sarah Bastyans, Bruce Beutler, Wolfgang W Schamel, György Fejer, Marina Alexandra Freudenberg","doi":"10.1159/000538282","DOIUrl":"10.1159/000538282","url":null,"abstract":"<p><strong>Introduction: </strong>While TLR ligands derived from microbial flora and pathogens are important activators of the innate immune system, a variety of factors such as intracellular bacteria, viruses, and parasites can induce a state of hyperreactivity, causing a dysregulated and potentially life-threatening cytokine over-response upon TLR ligand exposure. Type I interferon (IFN-αβ) is a central mediator in the induction of hypersensitivity and is strongly expressed in splenic conventional dendritic cells (cDC) and marginal zone macrophages (MZM) when mice are infected with adenovirus. This study investigates the ability of adenoviral infection to influence the activation state of the immune system and underlines the importance of considering this state when planning the treatment of patients.</p><p><strong>Methods: </strong>Infection with adenovirus-based vectors (Ad) or pretreatment with recombinant IFN-β was used as a model to study hypersensitivity to lipopolysaccharide (LPS) in mice, murine macrophages, and human blood samples. The TNF-α, IL-6, IFN-αβ, and IL-10 responses induced by LPS after pretreatment were measured. Mouse knockout models for MARCO, IFN-αβR, CD14, IRF3, and IRF7 were used to probe the mechanisms of the hypersensitive reaction.</p><p><strong>Results: </strong>We show that, similar to TNF-α and IL-6 but not IL-10, the induction of IFN-αβ by LPS increases strongly after Ad infection. This is true both in mice and in human blood samples ex vivo, suggesting that the regulatory mechanisms seen in the mouse are also present in humans. In mice, the scavenger receptor MARCO on IFN-αβ-producing cDC and splenic marginal zone macrophages is important for Ad uptake and subsequent cytokine overproduction by LPS. Interestingly, not all IFN-αβ-pretreated macrophage types exposed to LPS exhibit an enhanced TNF-α and IL-6 response. Pretreated alveolar macrophages and alveolar macrophage-like murine cell lines (MPI cells) show enhanced responses, while bone marrow-derived and peritoneal macrophages show a weaker response. This correlates with the respective absence or presence of the anti-inflammatory IL-10 response in these different macrophage types. In contrast, Ad or IFN-β pretreatment enhances the subsequent induction of IFN-αβ in all macrophage types. IRF3 is dispensable for the LPS-induced IFN-αβ overproduction in infected MPI cells and partly dispensable in infected mice, while IRF7 is required. The expression of the LPS co-receptor CD14 is important but not absolutely required for the elicitation of a TNF-α over-response to LPS in Ad-infected mice.</p><p><strong>Conclusion: </strong>Viral infections or application of virus-based vaccines induces type I interferon and can tip the balance of the innate immune system in the direction of hyperreactivity to a subsequent exposure to TLR ligands. The adenoviral model presented here is one example of how multiple factors, both environmental and genetic, affect the physiological r","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":" ","pages":"226-247"},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11023693/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-06-20DOI: 10.1159/000539934
Max Brendel, Thomas P Kohler, Janine V Neufend, Astrid Puppe, Nicolas Gisch, Sven Hammerschmidt
Introduction: The hydrophilic, polymeric chain of the lipoteichoic acid (LTA) of the Gram-positive pathobiont Streptococcus pneumoniae is covalently linked to the glycosylglycerolipid α-d-glucopyranosyl-(1,3)-diacylglycerol by the LTA ligase TacL, leading to its fixation in the cytoplasmic membrane. Pneumococcal LTA, sharing identical repeating units with the wall teichoic acids (WTA), is dispensable for normal growth but required for full virulence in invasive infections.
Methods: Mutants deficient in TacL and complemented strains constructed were tested for their growth, resistance against oxidative stress, and susceptibility against antimicrobial peptides. Further, the membrane fluidity of pneumococci, their capability to adhere to lung epithelial cells, and virulence in a Galleria mellonella as well as intranasal mouse infection model were assessed.
Results: In the present study, we indicate that LTA is already indispensable for pneumococcal adherence to human nasopharyngeal cells and colonization in an intranasal mouse infection model. Mutants deficient for TacL did not show morphological defects. However, our analysis of pneumococcal membranes in different serotypes showed an altered membrane fluidity and surface protein abundance of lipoproteins in mutants deficient for LTA but not WTA. These mutants had a decreased membrane fluidity, exhibited higher amounts of lipoproteins, and showed an increased susceptibility to antimicrobial peptides. In complemented mutant strains, this defect was fully restored.
Conclusion: Taken together, LTA is crucial for colonization and required to effectively protect pneumococci from innate immune defence mechanisms by maintaining the membrane integrity.
{"title":"Lipoteichoic Acids Are Essential for Pneumococcal Colonization and Membrane Integrity.","authors":"Max Brendel, Thomas P Kohler, Janine V Neufend, Astrid Puppe, Nicolas Gisch, Sven Hammerschmidt","doi":"10.1159/000539934","DOIUrl":"10.1159/000539934","url":null,"abstract":"<p><strong>Introduction: </strong>The hydrophilic, polymeric chain of the lipoteichoic acid (LTA) of the Gram-positive pathobiont Streptococcus pneumoniae is covalently linked to the glycosylglycerolipid α-<sc>d</sc>-glucopyranosyl-(1,3)-diacylglycerol by the LTA ligase TacL, leading to its fixation in the cytoplasmic membrane. Pneumococcal LTA, sharing identical repeating units with the wall teichoic acids (WTA), is dispensable for normal growth but required for full virulence in invasive infections.</p><p><strong>Methods: </strong>Mutants deficient in TacL and complemented strains constructed were tested for their growth, resistance against oxidative stress, and susceptibility against antimicrobial peptides. Further, the membrane fluidity of pneumococci, their capability to adhere to lung epithelial cells, and virulence in a Galleria mellonella as well as intranasal mouse infection model were assessed.</p><p><strong>Results: </strong>In the present study, we indicate that LTA is already indispensable for pneumococcal adherence to human nasopharyngeal cells and colonization in an intranasal mouse infection model. Mutants deficient for TacL did not show morphological defects. However, our analysis of pneumococcal membranes in different serotypes showed an altered membrane fluidity and surface protein abundance of lipoproteins in mutants deficient for LTA but not WTA. These mutants had a decreased membrane fluidity, exhibited higher amounts of lipoproteins, and showed an increased susceptibility to antimicrobial peptides. In complemented mutant strains, this defect was fully restored.</p><p><strong>Conclusion: </strong>Taken together, LTA is crucial for colonization and required to effectively protect pneumococci from innate immune defence mechanisms by maintaining the membrane integrity.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":" ","pages":"370-384"},"PeriodicalIF":4.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324232/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-08DOI: 10.1159/000540082
Marcelo Teocchi, Thaís de Andrade Eugênio, Lia Furlaneto Marega, Isabella Quinti, Maria Marluce Dos Santos Vilela
Introduction: In X-linked agammaglobulinemia (XLA), the diversity of BTK variants complicates the study of genotype-phenotype correlations. Since BTK negatively regulates toll-like receptors (TLRs), we investigated if distinct BTK mutation types selectively modulate TLR pathways, affecting disease expression.
Methods: Using reverse transcription-quantitative polymerase chain reaction, we quantified ten TLR signaling-related genes in XLA patients with missense (n = 3) and nonsense (n = 5) BTK mutations and healthy controls (n = 17).
Results: BTK, IRAK2, PIK3R4, REL, TFRC, and UBE2N were predominantly downregulated, while RIPK2, TLR3, TLR10, and TLR6 showed variable regulation. The missense XLA group exhibited significant downregulation of IRAK2, PIK3R4, REL, and TFRC and upregulation of TLR3 and/or TLR6.
Conclusion: Hypo-expression of TLR3, TLR6, and TLR10 may increase susceptibility to infections, while hyper-expression might contribute to chronic inflammatory conditions like arthritis or inflammatory bowel disease. Our findings shed light on the important inflammatory component characteristic of some XLA patients, even under optimal therapeutic conditions.
{"title":"Dysregulation of Toll-Like Receptor Signaling-Associated Gene Expression in X-Linked Agammaglobulinemia: Implications for Correlations Genotype-Phenotype and Disease Expression.","authors":"Marcelo Teocchi, Thaís de Andrade Eugênio, Lia Furlaneto Marega, Isabella Quinti, Maria Marluce Dos Santos Vilela","doi":"10.1159/000540082","DOIUrl":"10.1159/000540082","url":null,"abstract":"<p><strong>Introduction: </strong>In X-linked agammaglobulinemia (XLA), the diversity of BTK variants complicates the study of genotype-phenotype correlations. Since BTK negatively regulates toll-like receptors (TLRs), we investigated if distinct BTK mutation types selectively modulate TLR pathways, affecting disease expression.</p><p><strong>Methods: </strong>Using reverse transcription-quantitative polymerase chain reaction, we quantified ten TLR signaling-related genes in XLA patients with missense (n = 3) and nonsense (n = 5) BTK mutations and healthy controls (n = 17).</p><p><strong>Results: </strong>BTK, IRAK2, PIK3R4, REL, TFRC, and UBE2N were predominantly downregulated, while RIPK2, TLR3, TLR10, and TLR6 showed variable regulation. The missense XLA group exhibited significant downregulation of IRAK2, PIK3R4, REL, and TFRC and upregulation of TLR3 and/or TLR6.</p><p><strong>Conclusion: </strong>Hypo-expression of TLR3, TLR6, and TLR10 may increase susceptibility to infections, while hyper-expression might contribute to chronic inflammatory conditions like arthritis or inflammatory bowel disease. Our findings shed light on the important inflammatory component characteristic of some XLA patients, even under optimal therapeutic conditions.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":" ","pages":"425-439"},"PeriodicalIF":4.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-12DOI: 10.1159/000539824
Su Wang, Shufen Zhong, Ying Huang, Songling Zhu, Shuangfeng Chen, Ran Wang, Sonam Wangmo, Bo Peng, Houkun Lv, Jichao Yang, Liyan Ma, Zhiyang Ling, Yaguang Zhang, Pengfei Sui, Bing Sun
Introduction: MDM2 is known as the primary negative regulator of p53, and MDM2 promotes lung cancer fibrosis and lung injury through p53-dependent and p53-independent pathways. However, the mechanism by which MDM2 influences the pathogenesis of asthma is unknown. In this study, we investigated the function of MDM2 in lung epithelial cells in type 2 lung inflammation.
Methods: We used type II alveolar epithelial cell-specific heterozygous knockout of Mdm2 mice to validate its function. Then papain-induced asthma model was established, and changes in inflammation were observed by measuring immunohistochemistry and flow cytometry analysis.
Results: In this study, we knockdown the mouse Mdm2 gene in type 2 alveolar epithelial cells. We demonstrated that heterozygous Mdm2 gene-deleted mice were highly susceptible to protease allergen papain-induced pulmonary inflammation characterized by increased ILC2 numbers, IL-5 and IL-13 cytokine levels, and lung pathology. A mechanistic study showed that following the decreased expression of Mdm2 in lung epithelial cells and A549 cell line, p53 was overactivated, and the expression of its downstream genes p21, Puma, and Noxa was elevated, which resulted in apoptosis. After Mdm2 knockdown, the mRNA expression of inflammation-related gene IL-25, HMGB1, and TNF-α were increased, which further amplified the downstream ILC2 response and lung inflammation.
Conclusion: These results indicate that Mdm2 maintains the homeostasis of lung epithelial cells by targeting P53 and regulates the function of lung epithelial cells under type 2 lung inflammation.
{"title":"MDM2 Is Essential to Maintain the Homeostasis of Epithelial Cells by Targeting p53.","authors":"Su Wang, Shufen Zhong, Ying Huang, Songling Zhu, Shuangfeng Chen, Ran Wang, Sonam Wangmo, Bo Peng, Houkun Lv, Jichao Yang, Liyan Ma, Zhiyang Ling, Yaguang Zhang, Pengfei Sui, Bing Sun","doi":"10.1159/000539824","DOIUrl":"10.1159/000539824","url":null,"abstract":"<p><strong>Introduction: </strong>MDM2 is known as the primary negative regulator of p53, and MDM2 promotes lung cancer fibrosis and lung injury through p53-dependent and p53-independent pathways. However, the mechanism by which MDM2 influences the pathogenesis of asthma is unknown. In this study, we investigated the function of MDM2 in lung epithelial cells in type 2 lung inflammation.</p><p><strong>Methods: </strong>We used type II alveolar epithelial cell-specific heterozygous knockout of Mdm2 mice to validate its function. Then papain-induced asthma model was established, and changes in inflammation were observed by measuring immunohistochemistry and flow cytometry analysis.</p><p><strong>Results: </strong>In this study, we knockdown the mouse Mdm2 gene in type 2 alveolar epithelial cells. We demonstrated that heterozygous Mdm2 gene-deleted mice were highly susceptible to protease allergen papain-induced pulmonary inflammation characterized by increased ILC2 numbers, IL-5 and IL-13 cytokine levels, and lung pathology. A mechanistic study showed that following the decreased expression of Mdm2 in lung epithelial cells and A549 cell line, p53 was overactivated, and the expression of its downstream genes p21, Puma, and Noxa was elevated, which resulted in apoptosis. After Mdm2 knockdown, the mRNA expression of inflammation-related gene IL-25, HMGB1, and TNF-α were increased, which further amplified the downstream ILC2 response and lung inflammation.</p><p><strong>Conclusion: </strong>These results indicate that Mdm2 maintains the homeostasis of lung epithelial cells by targeting P53 and regulates the function of lung epithelial cells under type 2 lung inflammation.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":" ","pages":"397-412"},"PeriodicalIF":4.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-12-22DOI: 10.1159/000535986
Abdulsalam Adegoke, Julia Hanson, Ryan C Smith, Shahid Karim
Introduction: Hematophagous arthropods can acquire and transmit several pathogens of medical importance. In ticks, the innate immune system is crucial in the outcome between vector-pathogen interaction and overall vector competence. However, the specific immune response(s) elicited by the immune cells known as hemocytes remains largely undefined in Ehrlichia chaffeensis and its competent tick vector, Amblyomma americanum.
Methods: We utilized injection of clodronate liposome to deplete tick granulocytes combined with infection with E. chaffeensis to demonstrate their essential role in microbial infection.
Results: Here, we show that granulocytes, professional phagocytic cells, are integral in eliciting immune responses against commensal and pathogen infection. The chemical depletion of granulocytes led to decreased phagocytic efficiency of tissue-associated hemocytes. We demonstrate that E. chaffeensis can infect circulating hemocytes, and both cell-free plasma and hemocytes from E. chaffeensis-infected ticks can establish Ehrlichia infection in recipient ticks. Lastly, we provide evidence to show that granulocytes play a dual role in E. chaffeensis infection. Depleting granulocytic hemocytes increased Ehrlichia load in the salivary gland and midgut tissues. In contrast, granulocyte depletion led to a reduced systemic load of Ehrlichia.
Conclusion: This study has identified multiple roles for granulocytic hemocytes in the control and systemic dissemination of E. chaffeensis infection.
{"title":"Ehrlichia chaffeensis Co-Opts Phagocytic Hemocytes for Systemic Dissemination in the Lone Star Tick, Amblyomma americanum.","authors":"Abdulsalam Adegoke, Julia Hanson, Ryan C Smith, Shahid Karim","doi":"10.1159/000535986","DOIUrl":"10.1159/000535986","url":null,"abstract":"<p><strong>Introduction: </strong>Hematophagous arthropods can acquire and transmit several pathogens of medical importance. In ticks, the innate immune system is crucial in the outcome between vector-pathogen interaction and overall vector competence. However, the specific immune response(s) elicited by the immune cells known as hemocytes remains largely undefined in Ehrlichia chaffeensis and its competent tick vector, Amblyomma americanum.</p><p><strong>Methods: </strong>We utilized injection of clodronate liposome to deplete tick granulocytes combined with infection with E. chaffeensis to demonstrate their essential role in microbial infection.</p><p><strong>Results: </strong>Here, we show that granulocytes, professional phagocytic cells, are integral in eliciting immune responses against commensal and pathogen infection. The chemical depletion of granulocytes led to decreased phagocytic efficiency of tissue-associated hemocytes. We demonstrate that E. chaffeensis can infect circulating hemocytes, and both cell-free plasma and hemocytes from E. chaffeensis-infected ticks can establish Ehrlichia infection in recipient ticks. Lastly, we provide evidence to show that granulocytes play a dual role in E. chaffeensis infection. Depleting granulocytic hemocytes increased Ehrlichia load in the salivary gland and midgut tissues. In contrast, granulocyte depletion led to a reduced systemic load of Ehrlichia.</p><p><strong>Conclusion: </strong>This study has identified multiple roles for granulocytic hemocytes in the control and systemic dissemination of E. chaffeensis infection.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":" ","pages":"66-79"},"PeriodicalIF":5.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10794049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}