Eukaryotic cell size regulation and its implications for cellular function and dysfunction.

IF 29.9 1区 医学 Q1 PHYSIOLOGY Physiological reviews Pub Date : 2024-10-01 Epub Date: 2024-06-20 DOI:10.1152/physrev.00046.2023
Yagya Chadha, Arohi Khurana, Kurt M Schmoller
{"title":"Eukaryotic cell size regulation and its implications for cellular function and dysfunction.","authors":"Yagya Chadha, Arohi Khurana, Kurt M Schmoller","doi":"10.1152/physrev.00046.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1679-1717"},"PeriodicalIF":29.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physrev.00046.2023","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真核细胞大小调节及其对细胞功能和功能障碍的影响。
根据细胞类型、环境输入和疾病的不同,人体细胞的大小也大相径庭。近年来,人们逐渐认识到,细胞大小是细胞功能的主要调节因素。然而,我们才刚刚开始了解细胞功能的优化是如何决定特定细胞的最佳大小的。在这里,我们回顾了目前已知的真核细胞大小控制策略,以及细胞大小与细胞内生物分子比例、细胞器平衡和细胞周期进展之间错综复杂的联系。我们详细介绍了细胞大小对早期发育的调控以及细胞大小对细胞分化的影响。鉴于细胞大小对正常细胞生理的重要性,细胞大小控制必须考虑不断变化的环境条件。我们描述了细胞如何感知环境刺激(如营养物质的可用性),并相应地通过调节细胞生长和细胞周期进程来调整其大小。此外,我们还讨论了病理状态与细胞大小失调的相关性,以及长期以来细胞大小失调如何被认为是细胞功能障碍的下游后果。我们回顾了较新的研究,这些研究揭示了一种相反的因果关系,即细胞大小失调导致衰老和老化等病理生理表型。总之,我们强调了细胞大小在细胞功能和功能障碍中的重要作用,这可能会对临床诊断和治疗产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological reviews
Physiological reviews 医学-生理学
CiteScore
56.50
自引率
0.90%
发文量
53
期刊介绍: Physiological Reviews is a highly regarded journal that covers timely issues in physiological and biomedical sciences. It is targeted towards physiologists, neuroscientists, cell biologists, biophysicists, and clinicians with a special interest in pathophysiology. The journal has an ISSN of 0031-9333 for print and 1522-1210 for online versions. It has a unique publishing frequency where articles are published individually, but regular quarterly issues are also released in January, April, July, and October. The articles in this journal provide state-of-the-art and comprehensive coverage of various topics. They are valuable for teaching and research purposes as they offer interesting and clearly written updates on important new developments. Physiological Reviews holds a prominent position in the scientific community and consistently ranks as the most impactful journal in the field of physiology.
期刊最新文献
Nanodomain cAMP signaling in cardiac pathophysiology: potential for developing targeted therapeutic interventions. Psycho-physiological foundations of human physical activity behavior and motivation: Theories, systems, mechanisms, evolution, and genetics The (dys)regulation of energy storage in obesity NADPH Oxidases: Redox Regulation of Cell Homeostasis & Disease The TRP Channels Serving as Chemical-to-Electrical Signal Converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1