Meriç Arda Eşmekaya, Güney Gürsoy, Alaaddin Coşkun
{"title":"The estimation of pore size distribution of electroporated MCF-7 cell membrane.","authors":"Meriç Arda Eşmekaya, Güney Gürsoy, Alaaddin Coşkun","doi":"10.1080/15368378.2024.2366272","DOIUrl":null,"url":null,"abstract":"<p><p>The size of the pores created by external electrical pulses is important for molecule delivery into the cell. The size of pores and their distribution on the cell membrane determine the efficiency of molecule transport into the cell. There are very few studies visualizing the presence of electropores. In this study, we aimed to investigate the size distribution of electropores that were created by high intensity and short duration electrical pulses on MCF-7 cell membrane. Scanning Electron Microscopy (SEM) was used to visualize and characterize the membrane pores created by the external electric field. Structural changes on the surface of the electroporated cell membrane was observed by Atomic Force Microscopy (AFM). The size distribution of pore sizes was obtained by measuring the radius of 500 electropores. SEM imaging showed non-uniform patterning. The average radius of the electropores was 12 nm, 51.60% of pores were distributed within the range of 5 to 10 nm, and 81% of pores had radius below 15 nm. These results showed that microsecond (µs) high intensity electrical pulses cause the creation of heterogeneous nanopores on the cell membrane.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2024.2366272","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The size of the pores created by external electrical pulses is important for molecule delivery into the cell. The size of pores and their distribution on the cell membrane determine the efficiency of molecule transport into the cell. There are very few studies visualizing the presence of electropores. In this study, we aimed to investigate the size distribution of electropores that were created by high intensity and short duration electrical pulses on MCF-7 cell membrane. Scanning Electron Microscopy (SEM) was used to visualize and characterize the membrane pores created by the external electric field. Structural changes on the surface of the electroporated cell membrane was observed by Atomic Force Microscopy (AFM). The size distribution of pore sizes was obtained by measuring the radius of 500 electropores. SEM imaging showed non-uniform patterning. The average radius of the electropores was 12 nm, 51.60% of pores were distributed within the range of 5 to 10 nm, and 81% of pores had radius below 15 nm. These results showed that microsecond (µs) high intensity electrical pulses cause the creation of heterogeneous nanopores on the cell membrane.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.