Disruptions in axonal lysosome transport and its contribution to neurological disease

IF 6 2区 生物学 Q1 CELL BIOLOGY Current Opinion in Cell Biology Pub Date : 2024-06-20 DOI:10.1016/j.ceb.2024.102382
Jean-Michel Paumier, Swetha Gowrishankar
{"title":"Disruptions in axonal lysosome transport and its contribution to neurological disease","authors":"Jean-Michel Paumier,&nbsp;Swetha Gowrishankar","doi":"10.1016/j.ceb.2024.102382","DOIUrl":null,"url":null,"abstract":"<div><p>Lysosomes are central to the maintenance of protein and organelle homeostasis in cells. Optimal lysosome function is particularly critical for neurons which are long-lived, non-dividing and highly polarized with specialized compartments such as axons and dendrites with distinct architecture, cargo, and turnover requirements. In recent years, there has been a growing appreciation for the role played by axonal lysosome transport in regulating neuronal development, its maintenance and functioning. Perturbations to optimal axonal lysosome abundance leading to either strong accumulations or dearth of lysosomes are both linked to altered neuronal health and functioning. In this review we highlight how two critical regulators of axonal lysosome transport and abundance, the small GTPase Arl8 and the adaptor protein JIP3, aid in maintaining axonal lysosome homeostasis and how alterations to their levels and activity could contribute to neurodevelopmental and neurodegenerative diseases.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"89 ","pages":"Article 102382"},"PeriodicalIF":6.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424000619","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lysosomes are central to the maintenance of protein and organelle homeostasis in cells. Optimal lysosome function is particularly critical for neurons which are long-lived, non-dividing and highly polarized with specialized compartments such as axons and dendrites with distinct architecture, cargo, and turnover requirements. In recent years, there has been a growing appreciation for the role played by axonal lysosome transport in regulating neuronal development, its maintenance and functioning. Perturbations to optimal axonal lysosome abundance leading to either strong accumulations or dearth of lysosomes are both linked to altered neuronal health and functioning. In this review we highlight how two critical regulators of axonal lysosome transport and abundance, the small GTPase Arl8 and the adaptor protein JIP3, aid in maintaining axonal lysosome homeostasis and how alterations to their levels and activity could contribute to neurodevelopmental and neurodegenerative diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轴突溶酶体运输中断及其对神经系统疾病的影响
溶酶体是维持细胞中蛋白质和细胞器平衡的核心。溶酶体的最佳功能对神经元尤为重要,因为神经元具有寿命长、不分裂、高度极化等特点,轴突和树突等特化区具有不同的结构、货物和周转要求。近年来,人们越来越认识到轴突溶酶体运输在调节神经元发育、维持和功能方面所起的作用。轴突溶酶体的最佳丰度受到干扰,导致溶酶体大量积聚或缺乏,这两者都与神经元健康和功能的改变有关。在这篇综述中,我们将重点介绍轴突溶酶体运输和丰度的两个关键调控因子--小 GTP 酶 Arl8 和适配蛋白 JIP3 如何帮助维持轴突溶酶体的平衡,以及它们的水平和活性的改变如何导致神经发育和神经退行性疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
期刊最新文献
Mechanochemical control systems regulating animal cell size Septin dynamics and organization in mammalian cells Waves of change: Dynamic actomyosin networks in embryonic development Cellular morphodynamics and signaling around the transcellular passage cleft during rhizobial infections of legume roots Endothelial cell mechanics and dynamics in angiogenesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1