Pub Date : 2025-01-17DOI: 10.1016/j.ceb.2024.102461
Elisa Dultz, Valérie Doye
Nuclear pore complexes (NPCs) are giant molecular assemblies that form the gateway between the nucleus and the cytoplasm and accommodate the bidirectional transport of a large variety of cargoes. Recent years have seen tremendous advances in our understanding of their building principles and have in particular called attention to the flexibility and variability of NPC composition and structure. Here, we review these recent advances and discuss how the newest technologies push the boundaries of nuclear pore research forward, with a specific highlight on the NPC scaffold and a prominent pore appendage, the nuclear basket, whose architecture has long been elusive.
{"title":"Opening the gate: Complexity and modularity of the nuclear pore scaffold and basket.","authors":"Elisa Dultz, Valérie Doye","doi":"10.1016/j.ceb.2024.102461","DOIUrl":"https://doi.org/10.1016/j.ceb.2024.102461","url":null,"abstract":"<p><p>Nuclear pore complexes (NPCs) are giant molecular assemblies that form the gateway between the nucleus and the cytoplasm and accommodate the bidirectional transport of a large variety of cargoes. Recent years have seen tremendous advances in our understanding of their building principles and have in particular called attention to the flexibility and variability of NPC composition and structure. Here, we review these recent advances and discuss how the newest technologies push the boundaries of nuclear pore research forward, with a specific highlight on the NPC scaffold and a prominent pore appendage, the nuclear basket, whose architecture has long been elusive.</p>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"92 ","pages":"102461"},"PeriodicalIF":6.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.1016/j.ceb.2024.102462
Saho Matsui, Ryu-Suke Nozawa, Toru Hirota
Stable transmission of the genome during cell division is crucial for all life forms and is universally achieved by Aurora B-mediated error correction of the kinetochore-microtubule attachments. Aurora B is the enzymatic subunit of the tetrameric protein complex called the chromosomal passenger complex (CPC), and its centromeric enrichment is required for Aurora B to ensure accurate chromosome segregation. How cells enrich the CPC at centromeres is therefore an outstanding question to be elucidated. We review our recent understanding of how CPCs are assembled at inner centromeres in mitosis, the mechanism depending on mitotic histone phosphorylations and beyond.
{"title":"Organization of the chromosomal passenger complex clusters at inner centromeres in mitosis.","authors":"Saho Matsui, Ryu-Suke Nozawa, Toru Hirota","doi":"10.1016/j.ceb.2024.102462","DOIUrl":"https://doi.org/10.1016/j.ceb.2024.102462","url":null,"abstract":"<p><p>Stable transmission of the genome during cell division is crucial for all life forms and is universally achieved by Aurora B-mediated error correction of the kinetochore-microtubule attachments. Aurora B is the enzymatic subunit of the tetrameric protein complex called the chromosomal passenger complex (CPC), and its centromeric enrichment is required for Aurora B to ensure accurate chromosome segregation. How cells enrich the CPC at centromeres is therefore an outstanding question to be elucidated. We review our recent understanding of how CPCs are assembled at inner centromeres in mitosis, the mechanism depending on mitotic histone phosphorylations and beyond.</p>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"92 ","pages":"102462"},"PeriodicalIF":6.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-29DOI: 10.1016/j.ceb.2024.102460
Julien Cicero, Uri Manor
Mitochondria are dynamic organelles essential for cellular homeostasis, undergoing continuous fission and fusion processes that regulate their morphology, distribution, and function. Disruptions in these dynamics are linked to numerous diseases, including neurodegenerative disorders and cancer. Understanding these processes is vital for developing therapeutic strategies aimed at mitigating mitochondrial dysfunction. This review provides an overview of recent perspectives on mitochondrial dynamics, focusing on the need for live video microscopy imaging in order to fully understand mitochondrial phenotypes and pathology. Advanced imaging tools, such as machine learning-based segmentation and label-free microscopy approaches, have the potential to transform our ability to study mitochondrial dynamics in live cells.
{"title":"Beyond static snapshots: Mitochondria in action.","authors":"Julien Cicero, Uri Manor","doi":"10.1016/j.ceb.2024.102460","DOIUrl":"https://doi.org/10.1016/j.ceb.2024.102460","url":null,"abstract":"<p><p>Mitochondria are dynamic organelles essential for cellular homeostasis, undergoing continuous fission and fusion processes that regulate their morphology, distribution, and function. Disruptions in these dynamics are linked to numerous diseases, including neurodegenerative disorders and cancer. Understanding these processes is vital for developing therapeutic strategies aimed at mitigating mitochondrial dysfunction. This review provides an overview of recent perspectives on mitochondrial dynamics, focusing on the need for live video microscopy imaging in order to fully understand mitochondrial phenotypes and pathology. Advanced imaging tools, such as machine learning-based segmentation and label-free microscopy approaches, have the potential to transform our ability to study mitochondrial dynamics in live cells.</p>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"92 ","pages":"102460"},"PeriodicalIF":6.0,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142907903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24DOI: 10.1016/j.ceb.2024.102449
Carmen Sparr, Franz Meitinger
During mitosis, chromosomes condense, align to form a metaphase plate and segregate to the two daughter cells. Mitosis is one of the most complex recurring transformations in the life of a cell and requires a high degree of reliability to ensure the error-free transmission of genetic information to the next cell generation. An abnormally prolonged mitosis indicates potential defects that compromise genomic integrity. The mitotic stopwatch pathway detects even moderately prolonged mitoses by integrating memories of mitotic durations, ultimately leading to p53-mediated cell cycle arrest or death. This mechanism competes with mitogen signaling to stop the proliferation of damaged and potentially dangerous cells at a pre-oncogenic stage. Mitosis is a highly vulnerable phase, which is affected by multiple types of cellular damages and diverse stresses. We discuss the hypothesis that the duration of mitosis serves as an indicator of cell health.
{"title":"Prolonged mitosis: A key indicator for detecting stressed and damaged cells.","authors":"Carmen Sparr, Franz Meitinger","doi":"10.1016/j.ceb.2024.102449","DOIUrl":"https://doi.org/10.1016/j.ceb.2024.102449","url":null,"abstract":"<p><p>During mitosis, chromosomes condense, align to form a metaphase plate and segregate to the two daughter cells. Mitosis is one of the most complex recurring transformations in the life of a cell and requires a high degree of reliability to ensure the error-free transmission of genetic information to the next cell generation. An abnormally prolonged mitosis indicates potential defects that compromise genomic integrity. The mitotic stopwatch pathway detects even moderately prolonged mitoses by integrating memories of mitotic durations, ultimately leading to p53-mediated cell cycle arrest or death. This mechanism competes with mitogen signaling to stop the proliferation of damaged and potentially dangerous cells at a pre-oncogenic stage. Mitosis is a highly vulnerable phase, which is affected by multiple types of cellular damages and diverse stresses. We discuss the hypothesis that the duration of mitosis serves as an indicator of cell health.</p>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"92 ","pages":"102449"},"PeriodicalIF":6.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1016/j.ceb.2024.102448
Nick Gilbert, Davide Marenduzzo
Whilst DNA encodes our genetic blueprint as individual nucleobases, as well as epigenetic annotations in the form of biochemical marks, it also carries an extra layer of topological information -, the local over or underwinding of the double helix, known as DNA supercoiling. Supercoiling is a fundamental property of DNA that can be viewed as "topological epigenetics": it stores energy and structural information, and is tightly linked to fundamental processes; however, its quantification and study, by experiments and modelling alike, is challenging. We review experimental and simulation techniques to study supercoiling and its partition into twist and writhe, especially in the context of chromatin. We then discuss the dynamics of transcription-driven supercoiling in vitro and in vivo, and of supercoiling propagation along mammalian genomes. We finally provide evidence from the literature and potential mechanisms linking this ethereal topological mark to gene expression and chromosome instabilities in genetic diseases and cancer.
DNA 以单个核碱基的形式编码我们的遗传蓝图,并以生化标记的形式进行表观遗传注释,它还携带着一层额外的拓扑信息--双螺旋的局部上卷或下卷,即 DNA 超螺旋。超螺旋是 DNA 的一个基本特性,可被视为 "拓扑表观遗传学":它存储能量和结构信息,并与基本过程紧密相连;然而,通过实验和建模对其进行量化和研究却极具挑战性。我们回顾了研究超卷曲及其分为扭曲和缠绕的实验和模拟技术,尤其是在染色质的背景下。然后,我们讨论了体外和体内转录驱动的超卷曲动态,以及超卷曲沿哺乳动物基因组传播的动态。最后,我们将提供文献证据和潜在机制,证明这种虚无缥缈的拓扑标记与遗传疾病和癌症中的基因表达和染色体不稳定性有关。
{"title":"Topological epigenetics: The biophysics of DNA supercoiling and its relation to transcription and genome instability.","authors":"Nick Gilbert, Davide Marenduzzo","doi":"10.1016/j.ceb.2024.102448","DOIUrl":"https://doi.org/10.1016/j.ceb.2024.102448","url":null,"abstract":"<p><p>Whilst DNA encodes our genetic blueprint as individual nucleobases, as well as epigenetic annotations in the form of biochemical marks, it also carries an extra layer of topological information -, the local over or underwinding of the double helix, known as DNA supercoiling. Supercoiling is a fundamental property of DNA that can be viewed as \"topological epigenetics\": it stores energy and structural information, and is tightly linked to fundamental processes; however, its quantification and study, by experiments and modelling alike, is challenging. We review experimental and simulation techniques to study supercoiling and its partition into twist and writhe, especially in the context of chromatin. We then discuss the dynamics of transcription-driven supercoiling in vitro and in vivo, and of supercoiling propagation along mammalian genomes. We finally provide evidence from the literature and potential mechanisms linking this ethereal topological mark to gene expression and chromosome instabilities in genetic diseases and cancer.</p>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"92 ","pages":"102448"},"PeriodicalIF":6.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recognition that the most abundant class of genes present in the human genome are those producing long noncoding RNA (lncRNA) has hyped research on this category of transcripts. One such prototypical RNA, Xist, has particularly fueled interest. Initially characterized for its specific expression from the inactive X (Xi), recent studies have uncovered the molecular mechanisms underlying its essential role in the initiation of X-chromosome inactivation, from its exquisitely precise transcriptional regulation to the plethora of protein interactors forming the Xist ribonucleoprotein (RNP) that mediate its gene silencing activity. Here, we will discuss the recent advances that have broadened our knowledge of Xist functions, challenging classical models and revealing unsuspected, unconventional actions of its RNP.
{"title":"Unleashing XIST from X-chromosome inactivation","authors":"Céline Morey, Claire Rougeulle, Jean-François Ouimette","doi":"10.1016/j.ceb.2024.102446","DOIUrl":"10.1016/j.ceb.2024.102446","url":null,"abstract":"<div><div>Recognition that the most abundant class of genes present in the human genome are those producing long noncoding RNA (lncRNA) has hyped research on this category of transcripts. One such prototypical RNA, <em>Xist</em>, has particularly fueled interest. Initially characterized for its specific expression from the inactive X (Xi), recent studies have uncovered the molecular mechanisms underlying its essential role in the initiation of X-chromosome inactivation, from its exquisitely precise transcriptional regulation to the plethora of protein interactors forming the <em>Xist</em> ribonucleoprotein (RNP) that mediate its gene silencing activity. Here, we will discuss the recent advances that have broadened our knowledge of <em>Xist</em> functions, challenging classical models and revealing unsuspected, unconventional actions of its RNP.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"92 ","pages":"Article 102446"},"PeriodicalIF":6.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1016/j.ceb.2024.102444
Shahar Kasirer , David Sprinzak
The coordination between biochemical signals and cell mechanics has emerged in recent years as a crucial mechanism driving developmental patterning processes across a variety of developing and homeostatic systems. An important class of such developmental processes relies on local communication between neighboring cells through Notch signaling. Here, we review how the coordination between Notch-mediated differentiation and cell mechanics can give rise to unique cellular patterns. We discuss how global and local mechanical cues can affect, and be affected by, cellular differentiation and reorganization controlled by Notch signaling. We compare recent studies of such developmental processes, including the mammalian inner ear, Drosophila ommatidia, intestinal organoids, and zebrafish myocardium, to draw shared general concepts and their broader implications in biology.
{"title":"Interplay between Notch signaling and mechanical forces during developmental patterning processes","authors":"Shahar Kasirer , David Sprinzak","doi":"10.1016/j.ceb.2024.102444","DOIUrl":"10.1016/j.ceb.2024.102444","url":null,"abstract":"<div><div>The coordination between biochemical signals and cell mechanics has emerged in recent years as a crucial mechanism driving developmental patterning processes across a variety of developing and homeostatic systems. An important class of such developmental processes relies on local communication between neighboring cells through Notch signaling. Here, we review how the coordination between Notch-mediated differentiation and cell mechanics can give rise to unique cellular patterns. We discuss how global and local mechanical cues can affect, and be affected by, cellular differentiation and reorganization controlled by Notch signaling. We compare recent studies of such developmental processes, including the mammalian inner ear, Drosophila ommatidia, intestinal organoids, and zebrafish myocardium, to draw shared general concepts and their broader implications in biology.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"91 ","pages":"Article 102444"},"PeriodicalIF":6.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1016/j.ceb.2024.102445
Sarthak Sahoo, Kishore Hari , Mohit Kumar Jolly
Phenotypic plasticity is a hallmark of cancer and drives metastatic disease and drug resistance. The dynamics of epithelial mesenchymal plasticity is driven by complex interactions involving multiple feedback loops in underlying networks operating at multiple regulatory levels such as transcriptional and epigenetic. The past decade has witnessed a surge in systems level analysis of structural and dynamical traits of these networks. Here, we highlight the key insights elucidated from such efforts—a) multistability in gene regulatory networks and the co-existence of many hybrid phenotypes, thus enabling a landscape with multiple ‘attractors’, b) mutually antagonistic ‘teams’ of genes in these networks, shaping the rates of cell state transition in this landscape, and c) chromatin level changes that can alter the landscape, thus controlling reversibility of cell state transitions, allowing cellular memory in the context of epithelial mesenchymal plasticity in cancer cells. Such approaches, in close integration with high-throughput longitudinal data, have improved our understanding of the dynamics of cell state transitions implicated in tumor cell plasticity.
{"title":"Design principles of regulatory networks underlying epithelial mesenchymal plasticity in cancer cells","authors":"Sarthak Sahoo, Kishore Hari , Mohit Kumar Jolly","doi":"10.1016/j.ceb.2024.102445","DOIUrl":"10.1016/j.ceb.2024.102445","url":null,"abstract":"<div><div>Phenotypic plasticity is a hallmark of cancer and drives metastatic disease and drug resistance. The dynamics of epithelial mesenchymal plasticity is driven by complex interactions involving multiple feedback loops in underlying networks operating at multiple regulatory levels such as transcriptional and epigenetic. The past decade has witnessed a surge in systems level analysis of structural and dynamical traits of these networks. Here, we highlight the key insights elucidated from such efforts—a) multistability in gene regulatory networks and the co-existence of many hybrid phenotypes, thus enabling a landscape with multiple ‘attractors’, b) mutually antagonistic ‘teams’ of genes in these networks, shaping the rates of cell state transition in this landscape, and c) chromatin level changes that can alter the landscape, thus controlling reversibility of cell state transitions, allowing cellular memory in the context of epithelial mesenchymal plasticity in cancer cells. Such approaches, in close integration with high-throughput longitudinal data, have improved our understanding of the dynamics of cell state transitions implicated in tumor cell plasticity.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"92 ","pages":"Article 102445"},"PeriodicalIF":6.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1016/j.ceb.2024.102447
Tatsuya Hirano, Kazuhisa Kinoshita
In recent years, loop extrusion has attracted much attention as a general mechanism of chromosome organization mediated by structural maintenance of chromosomes (SMC) protein complexes, such as condensin and cohesin. Despite accumulating evidence in support of this mechanism, it is not fully established whether or how loop extrusion operates under physiological conditions, or whether any alternative or additional SMC-mediated mechanisms operate in the cell. In this review, we summarize non-loop extrusion mechanisms proposed in the literature and clarify unresolved issues to further enrich our understanding of how SMC protein complexes work.
{"title":"SMC-mediated chromosome organization: Does loop extrusion explain it all?","authors":"Tatsuya Hirano, Kazuhisa Kinoshita","doi":"10.1016/j.ceb.2024.102447","DOIUrl":"10.1016/j.ceb.2024.102447","url":null,"abstract":"<div><div>In recent years, loop extrusion has attracted much attention as a general mechanism of chromosome organization mediated by structural maintenance of chromosomes (SMC) protein complexes, such as condensin and cohesin. Despite accumulating evidence in support of this mechanism, it is not fully established whether or how loop extrusion operates under physiological conditions, or whether any alternative or additional SMC-mediated mechanisms operate in the cell. In this review, we summarize non-loop extrusion mechanisms proposed in the literature and clarify unresolved issues to further enrich our understanding of how SMC protein complexes work.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"92 ","pages":"Article 102447"},"PeriodicalIF":6.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.ceb.2024.102443
Heather E. Rizzo , Andy L. Zhang , Margaret L. Gardel
Cell size regulation arises from physical manifestations of cell proliferation and metabolic pathways. On one hand, coordination between these systems yields a constant cell size over generations to maintain cell size homeostasis. However, active regulation of cell size is crucial to physiology and to establish broad variation of cell sizes within an individual organism, and is accomplished via physical and biochemical pathways modulated by myriad intrinsic and extrinsic cues. In this review, we explore recent data elucidating the mechanobiological regulation of the volume of animal cells and its coordination with metabolic and proliferative pathways.
{"title":"Mechanochemical control systems regulating animal cell size","authors":"Heather E. Rizzo , Andy L. Zhang , Margaret L. Gardel","doi":"10.1016/j.ceb.2024.102443","DOIUrl":"10.1016/j.ceb.2024.102443","url":null,"abstract":"<div><div>Cell size regulation arises from physical manifestations of cell proliferation and metabolic pathways. On one hand, coordination between these systems yields a constant cell size over generations to maintain cell size homeostasis. However, active regulation of cell size is crucial to physiology and to establish broad variation of cell sizes within an individual organism, and is accomplished via physical and biochemical pathways modulated by myriad intrinsic and extrinsic cues. In this review, we explore recent data elucidating the mechanobiological regulation of the volume of animal cells and its coordination with metabolic and proliferative pathways.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"91 ","pages":"Article 102443"},"PeriodicalIF":6.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}