When and where to step: Terrain-aware real-time footstep location and timing optimization for bipedal robots

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Robotics and Autonomous Systems Pub Date : 2024-06-13 DOI:10.1016/j.robot.2024.104742
Ke Wang , Zhaoyang Jacopo Hu , Peter Tisnikar , Oskar Helander , Digby Chappell , Petar Kormushev
{"title":"When and where to step: Terrain-aware real-time footstep location and timing optimization for bipedal robots","authors":"Ke Wang ,&nbsp;Zhaoyang Jacopo Hu ,&nbsp;Peter Tisnikar ,&nbsp;Oskar Helander ,&nbsp;Digby Chappell ,&nbsp;Petar Kormushev","doi":"10.1016/j.robot.2024.104742","DOIUrl":null,"url":null,"abstract":"<div><p>Online footstep planning is essential for bipedal walking robots, allowing them to walk in the presence of disturbances and sensory noise. Most of the literature on the topic has focused on optimizing the footstep placement while keeping the step timing constant. In this work, we introduce a footstep planner capable of optimizing footstep placement and step time online. The proposed planner, consisting of an Interior Point Optimizer (IPOPT) and an optimizer based on Augmented Lagrangian (AL) method with analytical gradient descent, solves the full dynamics of the Linear Inverted Pendulum (LIP) model in real time to optimize for footstep location as well as step timing at the rate of 200 Hz. We show that such asynchronous real-time optimization with the AL method (ARTO-AL) provides the required robustness and speed for successful online footstep planning. Furthermore, ARTO-AL can be extended to plan footsteps in 3D, allowing terrain-aware footstep planning on uneven terrains. Compared to an algorithm with no footstep time adaptation, our proposed ARTO-AL demonstrates increased stability in simulated walking experiments as it can resist pushes on flat ground and on a <span><math><mrow><mn>10</mn><mo>°</mo></mrow></math></span> ramp up to 120 N and 100 N respectively. Videos<span><sup>2</sup></span> and open-source code<span><sup>3</sup></span> are released.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"179 ","pages":"Article 104742"},"PeriodicalIF":4.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092188902400126X/pdfft?md5=599882b40704d445bb509be303dd3163&pid=1-s2.0-S092188902400126X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092188902400126X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Online footstep planning is essential for bipedal walking robots, allowing them to walk in the presence of disturbances and sensory noise. Most of the literature on the topic has focused on optimizing the footstep placement while keeping the step timing constant. In this work, we introduce a footstep planner capable of optimizing footstep placement and step time online. The proposed planner, consisting of an Interior Point Optimizer (IPOPT) and an optimizer based on Augmented Lagrangian (AL) method with analytical gradient descent, solves the full dynamics of the Linear Inverted Pendulum (LIP) model in real time to optimize for footstep location as well as step timing at the rate of 200 Hz. We show that such asynchronous real-time optimization with the AL method (ARTO-AL) provides the required robustness and speed for successful online footstep planning. Furthermore, ARTO-AL can be extended to plan footsteps in 3D, allowing terrain-aware footstep planning on uneven terrains. Compared to an algorithm with no footstep time adaptation, our proposed ARTO-AL demonstrates increased stability in simulated walking experiments as it can resist pushes on flat ground and on a 10° ramp up to 120 N and 100 N respectively. Videos2 and open-source code3 are released.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
何时何地迈步:双足机器人的地形感知实时脚步位置和时间优化
在线脚步规划对于双足行走机器人来说至关重要,它使机器人能够在干扰和感知噪声的情况下行走。有关该主题的大部分文献都侧重于优化脚步位置,同时保持步进时间不变。在这项工作中,我们介绍了一种能够在线优化脚步位置和步进时间的脚步规划器。所提出的规划器由一个内部点优化器(IPOPT)和一个基于分析梯度下降的增强拉格朗日(AL)方法的优化器组成,实时求解线性倒立摆(LIP)模型的全部动力学,以 200 Hz 的速率优化脚步位置和步进时间。我们的研究表明,AL 方法(ARTO-AL)的这种异步实时优化为成功的在线脚步规划提供了所需的鲁棒性和速度。此外,ARTO-AL 还可以扩展到三维脚步规划,从而在不平坦的地形上实现地形感知脚步规划。与没有脚步时间自适应的算法相比,我们提出的 ARTO-AL 在模拟行走实验中表现出更高的稳定性,因为它可以在平地上和 10° 斜坡上分别抵抗高达 120 N 和 100 N 的推力。视频2和开源代码3已发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
期刊最新文献
Editorial Board A sensorless approach for cable failure detection and identification in cable-driven parallel robots Learning latent causal factors from the intricate sensor feedback of contact-rich robotic assembly tasks GPS-free autonomous navigation in cluttered tree rows with deep semantic segmentation Robust trajectory tracking for omnidirectional robots by means of anti-peaking linear active disturbance rejection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1