Tingcong Jiang , Yuzhuo Zhang , Lei Hua , Hong Li , Jinyang Zhao , Shouke Yan , Zhongjie Ren
{"title":"Helical polyisocyanides with thermally activated delayed fluorescence pendants for efficient circularly polarized light emission and detection","authors":"Tingcong Jiang , Yuzhuo Zhang , Lei Hua , Hong Li , Jinyang Zhao , Shouke Yan , Zhongjie Ren","doi":"10.1016/j.mser.2024.100818","DOIUrl":null,"url":null,"abstract":"<div><p>Chiral organic polymeric semiconductors are widely regarded as promising candidates for circularly polarized light (CPL) detection due to their advantages of easy chemical modification, solution processing and low cost. However, traditional organic polymeric materials face low photoresponsivity and photocurrent asymmetry factor when constructing CPL detectors. To address this issue, we develope single-handed helical polyisocyanides with thermally activated delayed fluorescence (TADF) feature to fabricate a donor-acceptor heterojunction photodetector with C<sub>60</sub>, where efficient triplet exciton utilization enables a high photocurrent response while the static single-handed helical main chains of polyisocyanides ensure a high photocurrent asymmetry factor, simultaneously. Furthermore, the performance of TADF polyisocyanides is conveniencely optimized by copolymerizing the host. Benefiting from the comprehensive functionality of TADF polyisocyanides, the prepared photodetectors exhibit a high responsivity of 0.21 A W<sup>−1</sup> and a very high photocurrent asymmetry factor of up to 0.12, which make it superior to the reported CPL photodetectors based on organic polymers. In addition, the detector has excellent reproducibility enabling no photocurrent roll-off after 1000 cycles. The long-term stability in ambient air also manifests its robustness. This work paves a new way for high-efficiency polymers based CPL detectors.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100818"},"PeriodicalIF":31.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000482","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral organic polymeric semiconductors are widely regarded as promising candidates for circularly polarized light (CPL) detection due to their advantages of easy chemical modification, solution processing and low cost. However, traditional organic polymeric materials face low photoresponsivity and photocurrent asymmetry factor when constructing CPL detectors. To address this issue, we develope single-handed helical polyisocyanides with thermally activated delayed fluorescence (TADF) feature to fabricate a donor-acceptor heterojunction photodetector with C60, where efficient triplet exciton utilization enables a high photocurrent response while the static single-handed helical main chains of polyisocyanides ensure a high photocurrent asymmetry factor, simultaneously. Furthermore, the performance of TADF polyisocyanides is conveniencely optimized by copolymerizing the host. Benefiting from the comprehensive functionality of TADF polyisocyanides, the prepared photodetectors exhibit a high responsivity of 0.21 A W−1 and a very high photocurrent asymmetry factor of up to 0.12, which make it superior to the reported CPL photodetectors based on organic polymers. In addition, the detector has excellent reproducibility enabling no photocurrent roll-off after 1000 cycles. The long-term stability in ambient air also manifests its robustness. This work paves a new way for high-efficiency polymers based CPL detectors.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.