An explicit primitive conservative solver for the Euler equations with arbitrary equation of state

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2024-06-14 DOI:10.1016/j.compfluid.2024.106340
Giuseppe Sirianni , Alberto Guardone , Barbara Re , Rémi Abgrall
{"title":"An explicit primitive conservative solver for the Euler equations with arbitrary equation of state","authors":"Giuseppe Sirianni ,&nbsp;Alberto Guardone ,&nbsp;Barbara Re ,&nbsp;Rémi Abgrall","doi":"10.1016/j.compfluid.2024.106340","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a procedure to solve the Euler equations by explicitly updating, in a conservative manner, a generic thermodynamic variable such as temperature, pressure or entropy instead of the total energy. The presented procedure is valid for any equation of state and spatial discretization. When using complex equations of state such as Span–Wagner, choosing the temperature as the generic thermodynamic variable yields great reductions in the computational costs associated to thermodynamic evaluations. Results computed with a state of the art thermodynamic model are presented, and computational times are analyzed. Particular attention is dedicated to the conservation of total energy, the propagation speed of shock waves and jump conditions. The procedure is thoroughly tested using the Span–Wagner equation of state through the CoolProp thermodynamic library and the Van der Waals equation of state, both in the ideal and non-ideal compressible fluid-dynamics regimes, by comparing it to the standard total energy update and analytical solutions where available.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"279 ","pages":"Article 106340"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045793024001725/pdfft?md5=c18234f37385f4cd4697d557a153a51b&pid=1-s2.0-S0045793024001725-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024001725","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a procedure to solve the Euler equations by explicitly updating, in a conservative manner, a generic thermodynamic variable such as temperature, pressure or entropy instead of the total energy. The presented procedure is valid for any equation of state and spatial discretization. When using complex equations of state such as Span–Wagner, choosing the temperature as the generic thermodynamic variable yields great reductions in the computational costs associated to thermodynamic evaluations. Results computed with a state of the art thermodynamic model are presented, and computational times are analyzed. Particular attention is dedicated to the conservation of total energy, the propagation speed of shock waves and jump conditions. The procedure is thoroughly tested using the Span–Wagner equation of state through the CoolProp thermodynamic library and the Van der Waals equation of state, both in the ideal and non-ideal compressible fluid-dynamics regimes, by comparing it to the standard total energy update and analytical solutions where available.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有任意状态方程的欧拉方程的显式原始保守求解器
本研究提出了一种求解欧拉方程的方法,即以保守的方式明确更新通用热力学变量,如温度、压力或熵,而不是总能量。该程序适用于任何状态方程和空间离散化。在使用复杂的状态方程(如斯潘-瓦格纳方程)时,选择温度作为通用热力学变量可大大降低与热力学评估相关的计算成本。本文介绍了采用最先进的热力学模型计算得出的结果,并对计算时间进行了分析。特别关注了总能量守恒、冲击波传播速度和跃迁条件。该程序通过 CoolProp 热力学库使用斯潘-瓦格纳状态方程和范德瓦耳斯状态方程,在理想和非理想的可压缩流体力学状态下进行了全面测试,并与标准总能量更新和现有的分析解决方案进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
Editorial Board Efficient quantum lattice gas automata Energy-consistent discretization of viscous dissipation with application to natural convection flow The numerical analysis of complete and partial electrocoalescence in the droplet-layer system employing the sharp interface technique for multiphase-medium simulation Numerical investigation on the end effects of the flow past a finite rotating circular cylinder with two free ends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1