Nana Geng , Menglin Xian , Lin Deng , Biao Kuang , Yiming Pan , Kaiwen Liu , Yuanlan Ye , Mengtian Fan , Zhixun Bai , Fengjin Guo
{"title":"Targeting the senescence-related genes MAPK12 and FOS to alleviate osteoarthritis","authors":"Nana Geng , Menglin Xian , Lin Deng , Biao Kuang , Yiming Pan , Kaiwen Liu , Yuanlan Ye , Mengtian Fan , Zhixun Bai , Fengjin Guo","doi":"10.1016/j.jot.2024.06.008","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The mechanism by which chondrocyte senescence aggravate OA progression has not yet been well elucidated. The aim of this study was to investigate the chondrocyte senescence related gene biosignatures in OA, and to analyze on the underlying mechanisms of senescence in OA.</p></div><div><h3>Materials and methods</h3><p>We intersected osteoarthritis dataset GSE82107 from GEO database and senescence dataset from CellAge database of human senescence-associated genes based on genetic manipulations experiments plus gene expression profilin, and screened out 4 overlapping genes. The hub genes were verified <em>in vitro</em> and in human OA cartilage tissues by qRT-PCR. We further confirmed the function of mitogen-activated protein kinase 12 (MAPK12) and Fos proto-oncogene (FOS) in OA <em>in vitro</em> and <em>in vivo</em> by qRT-PCR, western blotting, Edu staining, immunofluorescence, SA-β-gal staining, HE, IHC, von frey test, and hot plate.</p></div><div><h3>Results</h3><p>1458 downregulated and 218 upregulated DEGs were determined from GSE82107, and 279 human senescence-associated genes were downloaded from CellAge database. After intersection assay, we screened out 4 overlapping genes, of which FOS, CYR61 and TNFSF15 were upregulated, MAPK12 was downregulated. The expression of MAPK12 was obviously downregulated, whereas the expression profiles of FOS, CYR61 and TNFSF15 were remarkedly upregulated in H<sub>2</sub>O<sub>2</sub>- or IL-1β-stimulated C28/I2 cells, human OA cartilage tissues, and knee cartilage of aging mice. Furthermore, both MAPK12 over-expression and FOS knock-down can promote cell proliferation and cartilage anabolism, inhibit cell senescence and cartilage catabolism, relieve joint pain in H<sub>2</sub>O<sub>2</sub>- or IL-1β-stimulated C28/I2 cells and mouse primary chondrocytes, destabilization of the medial meniscus (DMM) mice.</p></div><div><h3>Conclusion</h3><p>This study explored that MAPK12 and FOS are involved in the occurrence and development of OA through modulating chondrocyte senescence. They might be biomarkers of OA chondrocyte senescence, and provides some evidence as subsequent possible therapeutic targets for OA.</p></div><div><h3>The translational potential of this article</h3><p>The translation potential of this article is that we revealed MAPK12 and FOS can effectively alleviate OA by regulating chondrocyte senescence, and thus provided potential therapeutic targets for prevention or treatment of OA in the future.</p></div>","PeriodicalId":16636,"journal":{"name":"Journal of Orthopaedic Translation","volume":"47 ","pages":"Pages 50-62"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214031X24000615/pdfft?md5=a8c50c0a6e9695d30505cdf1f9b17a6c&pid=1-s2.0-S2214031X24000615-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Translation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214031X24000615","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The mechanism by which chondrocyte senescence aggravate OA progression has not yet been well elucidated. The aim of this study was to investigate the chondrocyte senescence related gene biosignatures in OA, and to analyze on the underlying mechanisms of senescence in OA.
Materials and methods
We intersected osteoarthritis dataset GSE82107 from GEO database and senescence dataset from CellAge database of human senescence-associated genes based on genetic manipulations experiments plus gene expression profilin, and screened out 4 overlapping genes. The hub genes were verified in vitro and in human OA cartilage tissues by qRT-PCR. We further confirmed the function of mitogen-activated protein kinase 12 (MAPK12) and Fos proto-oncogene (FOS) in OA in vitro and in vivo by qRT-PCR, western blotting, Edu staining, immunofluorescence, SA-β-gal staining, HE, IHC, von frey test, and hot plate.
Results
1458 downregulated and 218 upregulated DEGs were determined from GSE82107, and 279 human senescence-associated genes were downloaded from CellAge database. After intersection assay, we screened out 4 overlapping genes, of which FOS, CYR61 and TNFSF15 were upregulated, MAPK12 was downregulated. The expression of MAPK12 was obviously downregulated, whereas the expression profiles of FOS, CYR61 and TNFSF15 were remarkedly upregulated in H2O2- or IL-1β-stimulated C28/I2 cells, human OA cartilage tissues, and knee cartilage of aging mice. Furthermore, both MAPK12 over-expression and FOS knock-down can promote cell proliferation and cartilage anabolism, inhibit cell senescence and cartilage catabolism, relieve joint pain in H2O2- or IL-1β-stimulated C28/I2 cells and mouse primary chondrocytes, destabilization of the medial meniscus (DMM) mice.
Conclusion
This study explored that MAPK12 and FOS are involved in the occurrence and development of OA through modulating chondrocyte senescence. They might be biomarkers of OA chondrocyte senescence, and provides some evidence as subsequent possible therapeutic targets for OA.
The translational potential of this article
The translation potential of this article is that we revealed MAPK12 and FOS can effectively alleviate OA by regulating chondrocyte senescence, and thus provided potential therapeutic targets for prevention or treatment of OA in the future.
期刊介绍:
The Journal of Orthopaedic Translation (JOT) is the official peer-reviewed, open access journal of the Chinese Speaking Orthopaedic Society (CSOS) and the International Chinese Musculoskeletal Research Society (ICMRS). It is published quarterly, in January, April, July and October, by Elsevier.