Latent variable model inversion for intervals. Application to tolerance intervals in class-modelling situations, and specification limits in process control
M.S. Sánchez , M.C. Ortiz , S. Ruiz , O. Valencia , L.A. Sarabia
{"title":"Latent variable model inversion for intervals. Application to tolerance intervals in class-modelling situations, and specification limits in process control","authors":"M.S. Sánchez , M.C. Ortiz , S. Ruiz , O. Valencia , L.A. Sarabia","doi":"10.1016/j.chemolab.2024.105166","DOIUrl":null,"url":null,"abstract":"<div><p>The paper deals with the inversion of intervals when a PLS (Partial Least Squares) model is used. However, instead of discretizing the interval, it is proved that the region resulting from the inversion of a PLS model is a convex set bounded by two parallel hyperplanes, each corresponding to the direct inversion of each endpoint of the given interval.</p><p>When the domain of the input variables is a convex set, any feasible solution with predictions within the interval set in the response can be obtained as a convex combination of a point on each of the two hyperplanes. In this way, the new solutions preserve the internal structure of the input variables.</p><p>This methodology can be of interest in several domains where the response under study is defined in terms of an interval of admissible values, such as specifications for a product in an industrial process, or tolerance intervals for computing compliant class-models.</p><p>The inversion of the corresponding fitted model defines a region in the input space (predictor variables) whose predictions fall within the specified interval. Then, estimating and exploring this region will increase the information about the problem under study.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"251 ","pages":"Article 105166"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169743924001060/pdfft?md5=916b6271ac0ec8660781143e8ff364ff&pid=1-s2.0-S0169743924001060-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001060","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper deals with the inversion of intervals when a PLS (Partial Least Squares) model is used. However, instead of discretizing the interval, it is proved that the region resulting from the inversion of a PLS model is a convex set bounded by two parallel hyperplanes, each corresponding to the direct inversion of each endpoint of the given interval.
When the domain of the input variables is a convex set, any feasible solution with predictions within the interval set in the response can be obtained as a convex combination of a point on each of the two hyperplanes. In this way, the new solutions preserve the internal structure of the input variables.
This methodology can be of interest in several domains where the response under study is defined in terms of an interval of admissible values, such as specifications for a product in an industrial process, or tolerance intervals for computing compliant class-models.
The inversion of the corresponding fitted model defines a region in the input space (predictor variables) whose predictions fall within the specified interval. Then, estimating and exploring this region will increase the information about the problem under study.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.