Two-Stage Submodular Maximization Under Knapsack Problem

IF 6.6 1区 计算机科学 Q1 Multidisciplinary Tsinghua Science and Technology Pub Date : 2024-06-20 DOI:10.26599/TST.2023.9010107
Zhicheng Liu;Jing Jin;Donglei Du;Xiaoyan Zhang
{"title":"Two-Stage Submodular Maximization Under Knapsack Problem","authors":"Zhicheng Liu;Jing Jin;Donglei Du;Xiaoyan Zhang","doi":"10.26599/TST.2023.9010107","DOIUrl":null,"url":null,"abstract":"Two-stage submodular maximization problem under cardinality constraint has been widely studied in machine learning and combinatorial optimization. In this paper, we consider knapsack constraint. In this problem, we give \n<tex>$n$</tex>\n articles and \n<tex>$m$</tex>\n categories, and the goal is to select a subset of articles that can maximize the function \n<tex>$F(S)$</tex>\n. Function \n<tex>$F(S)$</tex>\n consists of \n<tex>$m$</tex>\n monotone submodular functions \n<tex>$f_{j}, j=1,2, \\ldots, m$</tex>\n, and each \n<tex>$f_{j}$</tex>\n measures the similarity of each article in category \n<tex>$j$</tex>\n. We present a constant-approximation algorithm for this problem.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"29 6","pages":"1703-1708"},"PeriodicalIF":6.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10566003/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Two-stage submodular maximization problem under cardinality constraint has been widely studied in machine learning and combinatorial optimization. In this paper, we consider knapsack constraint. In this problem, we give $n$ articles and $m$ categories, and the goal is to select a subset of articles that can maximize the function $F(S)$ . Function $F(S)$ consists of $m$ monotone submodular functions $f_{j}, j=1,2, \ldots, m$ , and each $f_{j}$ measures the similarity of each article in category $j$ . We present a constant-approximation algorithm for this problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knapsack 问题下的两阶段次模态最大化
机器学习和组合优化领域已经广泛研究了万有引力约束下的两阶段子模块最大化问题。本文考虑的是 knapsack 约束。在这个问题中,我们给出了 $n$ 文章和 $m$ 类别,目标是选择一个能使函数 $F(S)$ 最大化的文章子集。函数 $F(S)$ 由 $m$ 单调子模态函数 $f_{j}, j=1,2, \ldots, m$ 组成,每个 $f_{j}$ 衡量类别 $j$ 中每篇文章的相似度。我们为这个问题提出了一种常量逼近算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
期刊最新文献
Front Cover Contents Fake News Detection: Extendable to Global Heterogeneous Graph Attention Network with External Knowledge A Fine-Grained Image Classification Model Based on Hybrid Attention and Pyramidal Convolution A First Successful Factorization of RSA-2048 Integer by D-Wave Quantum Computer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1