Lightweight and Privacy-Preserving IoT Service Recommendation Based on Learning to Hash

IF 6.6 1区 计算机科学 Q1 Multidisciplinary Tsinghua Science and Technology Pub Date : 2025-03-03 DOI:10.26599/TST.2024.9010064
Haoyang Wan;Yanping Wu;Yihong Yang;Chao Yan;Xiaoxiao Chi;Xuyun Zhang;Shigen Shen
{"title":"Lightweight and Privacy-Preserving IoT Service Recommendation Based on Learning to Hash","authors":"Haoyang Wan;Yanping Wu;Yihong Yang;Chao Yan;Xiaoxiao Chi;Xuyun Zhang;Shigen Shen","doi":"10.26599/TST.2024.9010064","DOIUrl":null,"url":null,"abstract":"In the Internet of Things (IoT) environment, user-service interaction data are often stored in multiple distributed platforms. In this situation, recommender systems need to integrate the distributed user-service interaction data across different platforms for making a comprehensive recommendation decision, during which user privacy is probably disclosed. Moreover, as user-service interaction records accumulate over time, they significantly reduce the efficiency of recommendations. To tackle these issues, we propose a lightweight and privacy-preserving service recommendation approach named SerRec<inf>L2H</inf>. In SerRec<inf>L2H</inf>, we employ Learning to Hash (L2H) to encapsulate sensitive user-service interaction data into less-sensitive user indices, which facilitates identifying users with similar preferences efficiently for accurate recommendations. We then validate the feasibility of our proposed SerRec<inf>L2H</inf> approach through massive experiments conducted on the popular WS-DREAM dataset. The comparative analysis with other competitive approaches demonstrates that our proposal surpasses other approaches in terms of recommendation accuracy and efficiency while protecting user privacy.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 4","pages":"1793-1807"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908664","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908664/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

In the Internet of Things (IoT) environment, user-service interaction data are often stored in multiple distributed platforms. In this situation, recommender systems need to integrate the distributed user-service interaction data across different platforms for making a comprehensive recommendation decision, during which user privacy is probably disclosed. Moreover, as user-service interaction records accumulate over time, they significantly reduce the efficiency of recommendations. To tackle these issues, we propose a lightweight and privacy-preserving service recommendation approach named SerRecL2H. In SerRecL2H, we employ Learning to Hash (L2H) to encapsulate sensitive user-service interaction data into less-sensitive user indices, which facilitates identifying users with similar preferences efficiently for accurate recommendations. We then validate the feasibility of our proposed SerRecL2H approach through massive experiments conducted on the popular WS-DREAM dataset. The comparative analysis with other competitive approaches demonstrates that our proposal surpasses other approaches in terms of recommendation accuracy and efficiency while protecting user privacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
期刊最新文献
Front Cover Contents Lightweight and Privacy-Preserving IoT Service Recommendation Based on Learning to Hash CRESP: Cost-Aware Recommendation-Oriented Edge Service Provision Multi-Label Prototype-Aware Structured Contrastive Distillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1