{"title":"Lightweight and Privacy-Preserving IoT Service Recommendation Based on Learning to Hash","authors":"Haoyang Wan;Yanping Wu;Yihong Yang;Chao Yan;Xiaoxiao Chi;Xuyun Zhang;Shigen Shen","doi":"10.26599/TST.2024.9010064","DOIUrl":null,"url":null,"abstract":"In the Internet of Things (IoT) environment, user-service interaction data are often stored in multiple distributed platforms. In this situation, recommender systems need to integrate the distributed user-service interaction data across different platforms for making a comprehensive recommendation decision, during which user privacy is probably disclosed. Moreover, as user-service interaction records accumulate over time, they significantly reduce the efficiency of recommendations. To tackle these issues, we propose a lightweight and privacy-preserving service recommendation approach named SerRec<inf>L2H</inf>. In SerRec<inf>L2H</inf>, we employ Learning to Hash (L2H) to encapsulate sensitive user-service interaction data into less-sensitive user indices, which facilitates identifying users with similar preferences efficiently for accurate recommendations. We then validate the feasibility of our proposed SerRec<inf>L2H</inf> approach through massive experiments conducted on the popular WS-DREAM dataset. The comparative analysis with other competitive approaches demonstrates that our proposal surpasses other approaches in terms of recommendation accuracy and efficiency while protecting user privacy.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 4","pages":"1793-1807"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908664","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908664/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
In the Internet of Things (IoT) environment, user-service interaction data are often stored in multiple distributed platforms. In this situation, recommender systems need to integrate the distributed user-service interaction data across different platforms for making a comprehensive recommendation decision, during which user privacy is probably disclosed. Moreover, as user-service interaction records accumulate over time, they significantly reduce the efficiency of recommendations. To tackle these issues, we propose a lightweight and privacy-preserving service recommendation approach named SerRecL2H. In SerRecL2H, we employ Learning to Hash (L2H) to encapsulate sensitive user-service interaction data into less-sensitive user indices, which facilitates identifying users with similar preferences efficiently for accurate recommendations. We then validate the feasibility of our proposed SerRecL2H approach through massive experiments conducted on the popular WS-DREAM dataset. The comparative analysis with other competitive approaches demonstrates that our proposal surpasses other approaches in terms of recommendation accuracy and efficiency while protecting user privacy.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.