Automatic beam optimization method for scanning electron microscopy based on electron beam Kernel estimation

Yunje Cho, Junghee Cho, Jonghyeok Park, Jeonghyun Wang, Seunggyo Jeong, Jubok Lee, Yun Hwang, Jiwoong Kim, Jeongwoo Yu, Heesu Chung, Hyenok Park, Subong Shon, Taeyong Jo, Myungjun Lee, Kwangrak Kim
{"title":"Automatic beam optimization method for scanning electron microscopy based on electron beam Kernel estimation","authors":"Yunje Cho, Junghee Cho, Jonghyeok Park, Jeonghyun Wang, Seunggyo Jeong, Jubok Lee, Yun Hwang, Jiwoong Kim, Jeongwoo Yu, Heesu Chung, Hyenok Park, Subong Shon, Taeyong Jo, Myungjun Lee, Kwangrak Kim","doi":"10.1038/s44172-024-00230-3","DOIUrl":null,"url":null,"abstract":"Scanning Electron Microscopy (SEM) leverages electron wavelengths for nanoscale imaging, necessitating precise parameter adjustments like focus, stigmator, and aperture alignment. However, traditional methods depend on skilled personnel and are time-consuming. Existing auto-focus and auto-stigmation techniques face challenges due to interdependent nature of these parameters and sample diversity. We propose a beam kernel estimation method to independently optimize SEM parameters, regardless of sample variations. Our approach untangles parameter influences, enabling concurrent optimization of focus, stigmator x, y, and aperture-align x, y. It achieves robust performance, with average errors of 1.00 μm for focus, 0.30% for stigmators, and 0.79% for aperture alignment, surpassing sharpness-based approach with its average errors of 6.42 μm for focus and 2.32% for stigmators and lacking in aperture-align capabilities. Our approach addresses SEM parameter interplay via blind deconvolution, facilitating rapid and automated optimization, thereby enhancing precision, efficiency, and applicability across scientific and industrial domains. Yunje Cho and colleagues improve the resolution of scanning electron microscopes via high-precision auto-focus and auto-stigmation. Their method operates without pre-existing knowledge about the sample.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00230-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00230-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scanning Electron Microscopy (SEM) leverages electron wavelengths for nanoscale imaging, necessitating precise parameter adjustments like focus, stigmator, and aperture alignment. However, traditional methods depend on skilled personnel and are time-consuming. Existing auto-focus and auto-stigmation techniques face challenges due to interdependent nature of these parameters and sample diversity. We propose a beam kernel estimation method to independently optimize SEM parameters, regardless of sample variations. Our approach untangles parameter influences, enabling concurrent optimization of focus, stigmator x, y, and aperture-align x, y. It achieves robust performance, with average errors of 1.00 μm for focus, 0.30% for stigmators, and 0.79% for aperture alignment, surpassing sharpness-based approach with its average errors of 6.42 μm for focus and 2.32% for stigmators and lacking in aperture-align capabilities. Our approach addresses SEM parameter interplay via blind deconvolution, facilitating rapid and automated optimization, thereby enhancing precision, efficiency, and applicability across scientific and industrial domains. Yunje Cho and colleagues improve the resolution of scanning electron microscopes via high-precision auto-focus and auto-stigmation. Their method operates without pre-existing knowledge about the sample.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于电子束核估计的扫描电子显微镜自动光束优化方法
扫描电子显微镜(SEM)利用电子波长进行纳米级成像,需要对聚焦、定焦器和光圈对准等参数进行精确调整。然而,传统方法依赖于技术熟练的人员,而且耗费时间。现有的自动聚焦和自动定焦技术由于这些参数的相互依赖性和样品的多样性而面临挑战。我们提出了一种光束核估计方法,可独立优化扫描电子显微镜参数,而不受样本变化的影响。该方法性能稳健,聚焦平均误差为 1.00 μm,定影平均误差为 0.30%,光圈对准平均误差为 0.79%,超过了基于锐度的方法(聚焦平均误差为 6.42 μm,定影平均误差为 2.32%,缺乏光圈对准功能)。我们的方法通过盲解卷积解决了扫描电子显微镜参数之间的相互作用,促进了快速和自动优化,从而提高了精度、效率以及在科学和工业领域的适用性。Yunje Cho 及其同事通过高精度自动聚焦和自动散焦提高了扫描电子显微镜的分辨率。他们的方法无需预先了解样品即可运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bio-inspired multi-dimensional deep fusion learning for predicting dynamical aerospace propulsion systems Perspectives on innovative non-fertilizer applications of sewage sludge for mitigating environmental and health hazards Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion Ultra-lightweight rechargeable battery with enhanced gravimetric energy densities >750 Wh kg−1 in lithium–sulfur pouch cell An energy-resolving photon-counting X-ray detector for computed tomography combining silicon-photomultiplier arrays and scintillation crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1