Farhan Tanvir;Khaled Mohammed Saifuddin;Muhammad Ifte Khairul Islam;Esra Akbas
{"title":"DDI Prediction With Heterogeneous Information Network - Meta-Path Based Approach","authors":"Farhan Tanvir;Khaled Mohammed Saifuddin;Muhammad Ifte Khairul Islam;Esra Akbas","doi":"10.1109/TCBB.2024.3417715","DOIUrl":null,"url":null,"abstract":"Drug-drug interaction (DDI) indicates where a particular drug's desired course of action is modified when taken with other drug (s). DDIs may hamper, enhance, or reduce the expected effect of either drug or, in the worst possible scenario, cause an adverse side effect. While it is crucial to identify drug-drug interactions, it is quite impossible to detect all possible DDIs for a new drug during the clinical trial. Therefore, many computational methods are proposed for this task. This paper presents a novel method based on a heterogeneous information network (HIN), which consists of drugs and other biomedical entities like proteins, pathways, and side effects. Afterward, we extract the rich semantic relationships among these entities using different meta-path-based topological features and facilitate DDI prediction. In addition, we present a heterogeneous graph attention network-based end-to-end model for DDI prediction in the heterogeneous graph. Experimental results show that our proposed method accurately predicts DDIs and outperforms the baselines significantly.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 5","pages":"1168-1179"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10568394/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Drug-drug interaction (DDI) indicates where a particular drug's desired course of action is modified when taken with other drug (s). DDIs may hamper, enhance, or reduce the expected effect of either drug or, in the worst possible scenario, cause an adverse side effect. While it is crucial to identify drug-drug interactions, it is quite impossible to detect all possible DDIs for a new drug during the clinical trial. Therefore, many computational methods are proposed for this task. This paper presents a novel method based on a heterogeneous information network (HIN), which consists of drugs and other biomedical entities like proteins, pathways, and side effects. Afterward, we extract the rich semantic relationships among these entities using different meta-path-based topological features and facilitate DDI prediction. In addition, we present a heterogeneous graph attention network-based end-to-end model for DDI prediction in the heterogeneous graph. Experimental results show that our proposed method accurately predicts DDIs and outperforms the baselines significantly.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system