Formation of nanoparticles during accelerated UV degradation of fleece polyester textiles

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES NanoImpact Pub Date : 2024-06-19 DOI:10.1016/j.impact.2024.100520
Tong Yang , Bernd Nowack
{"title":"Formation of nanoparticles during accelerated UV degradation of fleece polyester textiles","authors":"Tong Yang ,&nbsp;Bernd Nowack","doi":"10.1016/j.impact.2024.100520","DOIUrl":null,"url":null,"abstract":"<div><p>Micro- and nanoplastics have emerged as critical pollutants in various ecosystems, posing potential environmental and human health risks. Washing of polyester textiles has been identified as one of the sources of nanoplastics. However, other stages of the textile life cycle may also release nanoparticles. This study aimed to examine nanoparticle release during UV degradation of polyester textiles under controlled and real-world conditions. Fleece polyester textiles were weathered under simulated sunlight for up to two months, either in air or submerged in water. We conducted bi-weekly SEM image analyses and quantified released nanoparticles using nanoparticle tracking analysis (NTA). At week 0, the fiber surface appeared smooth after prewashing. In the air group, nanoparticles appeared on the fiber surface after UV-exposure. In the group of textiles submerged in water, the surfaces developed more pits over time. The cumulative nanoparticle emission from the weathered textiles ranged from 1.4 × 10<sup>11</sup> to 4.0 × 10<sup>11</sup> particles per gram of fabric in the air group and from 1.6 × 10<sup>11</sup> to 4.4 × 10<sup>11</sup> particles per gram of fabric in the water group over two months. The predominant particle size fell into the 100 to 200 nm range. The estimated mass of the released nanoparticles was 0.06–0.26 g per gram of fabric, which is lower than the amount released during the washing of new textiles. Additionally, Scanning Transmission X-ray Microscopy (STXM) images indicated that the weathered nanoparticles underwent oxidation. Overall, the research offers valuable insights into nanoparticle formation and release from polyester textiles during UV degradation.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"35 ","pages":"Article 100520"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452074824000302/pdfft?md5=69e210c2dfe29ad7919d1dfaa6a20232&pid=1-s2.0-S2452074824000302-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074824000302","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Micro- and nanoplastics have emerged as critical pollutants in various ecosystems, posing potential environmental and human health risks. Washing of polyester textiles has been identified as one of the sources of nanoplastics. However, other stages of the textile life cycle may also release nanoparticles. This study aimed to examine nanoparticle release during UV degradation of polyester textiles under controlled and real-world conditions. Fleece polyester textiles were weathered under simulated sunlight for up to two months, either in air or submerged in water. We conducted bi-weekly SEM image analyses and quantified released nanoparticles using nanoparticle tracking analysis (NTA). At week 0, the fiber surface appeared smooth after prewashing. In the air group, nanoparticles appeared on the fiber surface after UV-exposure. In the group of textiles submerged in water, the surfaces developed more pits over time. The cumulative nanoparticle emission from the weathered textiles ranged from 1.4 × 1011 to 4.0 × 1011 particles per gram of fabric in the air group and from 1.6 × 1011 to 4.4 × 1011 particles per gram of fabric in the water group over two months. The predominant particle size fell into the 100 to 200 nm range. The estimated mass of the released nanoparticles was 0.06–0.26 g per gram of fabric, which is lower than the amount released during the washing of new textiles. Additionally, Scanning Transmission X-ray Microscopy (STXM) images indicated that the weathered nanoparticles underwent oxidation. Overall, the research offers valuable insights into nanoparticle formation and release from polyester textiles during UV degradation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在加速紫外线降解羊毛聚酯纺织品的过程中形成纳米颗粒。
微塑料和纳米塑料已成为各种生态系统中的重要污染物,对环境和人类健康构成潜在风险。聚酯纺织品的洗涤被认为是纳米塑料的来源之一。然而,纺织品生命周期的其他阶段也可能释放纳米颗粒。本研究旨在考察聚酯纺织品在受控和实际条件下紫外线降解过程中的纳米颗粒释放情况。在模拟阳光下,将羊毛聚酯纺织品在空气中或浸泡在水中风化长达两个月。我们每两周进行一次 SEM 图像分析,并使用纳米粒子跟踪分析 (NTA) 对释放的纳米粒子进行量化。在第 0 周,预洗后的纤维表面看起来很光滑。在空气组中,紫外线照射后纤维表面出现了纳米颗粒。在浸泡在水中的纺织品组中,随着时间的推移,表面出现了更多的凹坑。在两个月的时间里,风化纺织品的累计纳米粒子排放量为:空气组每克织物 1.4 × 1011 到 4.0 × 1011 粒子,水组每克织物 1.6 × 1011 到 4.4 × 1011 粒子。主要的颗粒大小在 100 纳米到 200 纳米之间。据估计,每克织物释放的纳米颗粒的质量为 0.06-0.26 克,低于新纺织品洗涤过程中的释放量。此外,扫描透射 X 射线显微镜(STXM)图像显示,风化的纳米颗粒发生了氧化。总之,这项研究为了解聚酯纺织品在紫外线降解过程中纳米粒子的形成和释放提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NanoImpact
NanoImpact Social Sciences-Safety Research
CiteScore
11.00
自引率
6.10%
发文量
69
审稿时长
23 days
期刊介绍: NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.
期刊最新文献
Impact of polystyrene nanoplastics on physiology, nutrient uptake, and root system architecture of aeroponically grown citrus plants. Biodistribution and toxic potential of silver nanoparticles when introduced to the female rat reproductive tract A multi-omics approach reveals differences in toxicity and mechanisms in rice (Oryza sativa L.) exposed to anatase or rutile TiO2 nanoparticles Bridging the gap: Innovative human-based in vitro approaches for nanomaterials hazard assessment and their role in safe and sustainable by design, risk assessment, and life cycle assessment Response to shock load of titanium dioxide nanoparticles on aerobic granular sludge and algal-bacterial granular sludge processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1