{"title":"Valorisation of coffee husk as replacement of sand in alkali-activated bricks","authors":"Sourav Biswas , Nabil Hossiney , Mothi Krishna Mohan , Srinidhi Lakshmish Kumar","doi":"10.1016/j.cscm.2024.e03440","DOIUrl":null,"url":null,"abstract":"<div><p>The coffee industry is known to generate voluminous amount of waste during its production process. Different types of waste such as coffee hush ash and spent coffee ground, to name a few, have been extensively researched as a substitute in the construction industry. However, the utilization of coffee husk as a substitute for construction materials has seen limited exploration. In particular, there are no studies which investigate the utilization of waste coffee husk (WCH) in alkali-activated bricks. Therefore, in this research WCH was employed as a substitute to sand in alkali-activated bricks. Alkali-activated bricks were synthesized with ground granulated blast furnace slag (GGBFS), fly ash (FA), sand, and sodium silicate solution (SS). Sand was replaced with WCH at replacement rates of 0 %, 5 %, 10 %, 15 %, 20 %, and 30 % by volume. The developed bricks were evaluated for strength, density, water absorption, porosity, and efflorescence. Additionally, structural and morphological characteristics of bricks were assessed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermogravimetric analysis (TGA), and Scanning electron microscopy (SEM) analysis. The results indicate that bricks with WCH improve the compressive strength with a maximum value of 15.7 MPa, and reduce the density with a minimum value of 1509 kg/m<sup>3</sup> for composites with 30 % WCH, respectively. The water absorption and porosity of bricks increased with incorporation of WCH due to porous structure of WCH. The physico-chemical analysis of the bricks shows effective geopolymerization in the composite system with WCH, and further the bricks with 30 % WCH depict thermal stability with insignificant weight loss at 575 ℃. Finally, the composites with 30 % WCH classify as good quality bricks as per IS 1077: 1992 specifications, and this will improve practical feasibility of such materials in the construction industry.</p></div>","PeriodicalId":9641,"journal":{"name":"Case Studies in Construction Materials","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214509524005916/pdfft?md5=248305a6a28a74f069bc1b4eada40602&pid=1-s2.0-S2214509524005916-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Construction Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214509524005916","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The coffee industry is known to generate voluminous amount of waste during its production process. Different types of waste such as coffee hush ash and spent coffee ground, to name a few, have been extensively researched as a substitute in the construction industry. However, the utilization of coffee husk as a substitute for construction materials has seen limited exploration. In particular, there are no studies which investigate the utilization of waste coffee husk (WCH) in alkali-activated bricks. Therefore, in this research WCH was employed as a substitute to sand in alkali-activated bricks. Alkali-activated bricks were synthesized with ground granulated blast furnace slag (GGBFS), fly ash (FA), sand, and sodium silicate solution (SS). Sand was replaced with WCH at replacement rates of 0 %, 5 %, 10 %, 15 %, 20 %, and 30 % by volume. The developed bricks were evaluated for strength, density, water absorption, porosity, and efflorescence. Additionally, structural and morphological characteristics of bricks were assessed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermogravimetric analysis (TGA), and Scanning electron microscopy (SEM) analysis. The results indicate that bricks with WCH improve the compressive strength with a maximum value of 15.7 MPa, and reduce the density with a minimum value of 1509 kg/m3 for composites with 30 % WCH, respectively. The water absorption and porosity of bricks increased with incorporation of WCH due to porous structure of WCH. The physico-chemical analysis of the bricks shows effective geopolymerization in the composite system with WCH, and further the bricks with 30 % WCH depict thermal stability with insignificant weight loss at 575 ℃. Finally, the composites with 30 % WCH classify as good quality bricks as per IS 1077: 1992 specifications, and this will improve practical feasibility of such materials in the construction industry.
期刊介绍:
Case Studies in Construction Materials provides a forum for the rapid publication of short, structured Case Studies on construction materials. In addition, the journal also publishes related Short Communications, Full length research article and Comprehensive review papers (by invitation).
The journal will provide an essential compendium of case studies for practicing engineers, designers, researchers and other practitioners who are interested in all aspects construction materials. The journal will publish new and novel case studies, but will also provide a forum for the publication of high quality descriptions of classic construction material problems and solutions.