Evaluating LLMs on document-based QA: Exact answer selection and numerical extraction using CogTale dataset

Zafaryab Rasool , Stefanus Kurniawan , Sherwin Balugo , Scott Barnett , Rajesh Vasa , Courtney Chesser , Benjamin M. Hampstead , Sylvie Belleville , Kon Mouzakis , Alex Bahar-Fuchs
{"title":"Evaluating LLMs on document-based QA: Exact answer selection and numerical extraction using CogTale dataset","authors":"Zafaryab Rasool ,&nbsp;Stefanus Kurniawan ,&nbsp;Sherwin Balugo ,&nbsp;Scott Barnett ,&nbsp;Rajesh Vasa ,&nbsp;Courtney Chesser ,&nbsp;Benjamin M. Hampstead ,&nbsp;Sylvie Belleville ,&nbsp;Kon Mouzakis ,&nbsp;Alex Bahar-Fuchs","doi":"10.1016/j.nlp.2024.100083","DOIUrl":null,"url":null,"abstract":"<div><p>Document-based Question-Answering (QA) tasks are crucial for precise information retrieval. While some existing work focus on evaluating large language model’s (LLMs) performance on retrieving and answering questions from documents, assessing the LLMs performance on QA types that require exact answer selection from predefined options and numerical extraction is yet to be fully assessed. In this paper, we specifically focus on this underexplored context and conduct empirical analysis of LLMs (GPT-4 and GPT-3.5) on question types, including single-choice, yes–no, multiple-choice, and number extraction questions from documents. We use the CogTale dataset for evaluation, which provide human expert-tagged responses, offering a robust benchmark for precision and factual grounding. We found that LLMs, particularly GPT-4, can precisely answer many single-choice and yes–no questions given relevant context, demonstrating their efficacy in information retrieval tasks. However, their performance diminishes when confronted with multiple-choice and number extraction formats, lowering the overall performance of the models on this task, indicating that these models may not yet be sufficiently reliable for the task. This limits the applications of LLMs on applications demanding precise information extraction and inference from documents, such as meta-analysis tasks. Our work offers a framework for ongoing dataset evaluation, ensuring that LLM applications for information retrieval and document analysis continue to meet evolving standards.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"8 ","pages":"Article 100083"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949719124000311/pdfft?md5=99895c63882405f8b66929d134da8f31&pid=1-s2.0-S2949719124000311-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719124000311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Document-based Question-Answering (QA) tasks are crucial for precise information retrieval. While some existing work focus on evaluating large language model’s (LLMs) performance on retrieving and answering questions from documents, assessing the LLMs performance on QA types that require exact answer selection from predefined options and numerical extraction is yet to be fully assessed. In this paper, we specifically focus on this underexplored context and conduct empirical analysis of LLMs (GPT-4 and GPT-3.5) on question types, including single-choice, yes–no, multiple-choice, and number extraction questions from documents. We use the CogTale dataset for evaluation, which provide human expert-tagged responses, offering a robust benchmark for precision and factual grounding. We found that LLMs, particularly GPT-4, can precisely answer many single-choice and yes–no questions given relevant context, demonstrating their efficacy in information retrieval tasks. However, their performance diminishes when confronted with multiple-choice and number extraction formats, lowering the overall performance of the models on this task, indicating that these models may not yet be sufficiently reliable for the task. This limits the applications of LLMs on applications demanding precise information extraction and inference from documents, such as meta-analysis tasks. Our work offers a framework for ongoing dataset evaluation, ensuring that LLM applications for information retrieval and document analysis continue to meet evolving standards.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估基于文档的 QA 的 LLM:使用 CogTale 数据集进行精确答案选择和数字提取
基于文档的问答(QA)任务对于精确信息检索至关重要。虽然现有的一些工作侧重于评估大型语言模型(LLMs)在检索和回答文档中的问题时的性能,但评估 LLMs 在需要从预定义选项和数字提取中精确选择答案的 QA 类型中的性能还没有得到充分评估。在本文中,我们特别关注了这一尚未充分探索的领域,并对 LLMs(GPT-4 和 GPT-3.5)在问题类型(包括单选题、是非题、多选题和文档中的数字提取问题)上的表现进行了实证分析。我们使用 CogTale 数据集进行评估,该数据集提供了带有人类专家标签的回答,为精确度和事实基础提供了可靠的基准。我们发现,LLMs,尤其是 GPT-4,可以在相关语境下精确回答许多单选题和是非题,这证明了它们在信息检索任务中的功效。然而,当面对多选题和数字提取格式时,它们的性能就会下降,从而降低了模型在这项任务中的整体性能,这表明这些模型在这项任务中可能还不够可靠。这就限制了 LLM 在要求从文档中精确提取和推断信息的应用中的应用,如元分析任务。我们的工作为正在进行的数据集评估提供了一个框架,确保用于信息检索和文档分析的 LLM 应用继续符合不断发展的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uzbek language morphology analyser Evaluation of google translate for Mandarin Chinese translation using sentiment and semantic analysis Bridging gaps in natural language processing for Yorùbá: A systematic review of a decade of progress and prospects Llama3SP: A resource-Efficient large language model for agile story point estimation A systematic review of figurative language detection: Methods, challenges, and multilingual perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1