Siyi Jia , Mei Hong , He Xiao , Xingchen Liu , Xili Tong
{"title":"Hydrogenated graphene support for accelerating alkaline hydrogen evolution reaction","authors":"Siyi Jia , Mei Hong , He Xiao , Xingchen Liu , Xili Tong","doi":"10.1016/j.cartre.2024.100374","DOIUrl":null,"url":null,"abstract":"<div><p>Up to now, Platinum is still wildly regarded as the state-the-art catalyst toward hydrogen evolution reaction (HER) in acid, however alkaline HER is limited by its poor activity for water dissociation. In this regard, hydrogenated graphene (HG) was emerged as a functional support to boost alkaline HER for Pt catalysts. As a result, the optimized Pt/HG (4.15 % wt Pt) showed a wonderful activity in terms of an overpotential of 54 mV at 10 mA cm<sup>−2</sup> as well as a Tafel slope of 30.28 mV dec<sup>−1</sup>, superior to the counterparts and even 20 wt% commercial Pt/C. Such a high activity was attributed to the fact HG can optimize electronic state and exposed facet of Pt to accelerate alkaline HER. In addition, density function theory (DFT) calculation revealed the energy barrier for H transfer from HG to Pt only required 0.02 eV, in line with experimental analysis. This work provides a promising strategy to design advanced catalysts toward alkaline HER and beyond.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000555/pdfft?md5=ea905537dfb250a9878ee50b87f00088&pid=1-s2.0-S2667056924000555-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Up to now, Platinum is still wildly regarded as the state-the-art catalyst toward hydrogen evolution reaction (HER) in acid, however alkaline HER is limited by its poor activity for water dissociation. In this regard, hydrogenated graphene (HG) was emerged as a functional support to boost alkaline HER for Pt catalysts. As a result, the optimized Pt/HG (4.15 % wt Pt) showed a wonderful activity in terms of an overpotential of 54 mV at 10 mA cm−2 as well as a Tafel slope of 30.28 mV dec−1, superior to the counterparts and even 20 wt% commercial Pt/C. Such a high activity was attributed to the fact HG can optimize electronic state and exposed facet of Pt to accelerate alkaline HER. In addition, density function theory (DFT) calculation revealed the energy barrier for H transfer from HG to Pt only required 0.02 eV, in line with experimental analysis. This work provides a promising strategy to design advanced catalysts toward alkaline HER and beyond.