Facile sunlight-irradiation mediated green synthesis of highly stable silver nanoparticles using Archidendron bubalinum pods extract for antibacterial activity application

Muhamad Allan Serunting , Muhammad Ali Zulfikar , Dian Ayu Setyorini , Wa Ode Sri Rizki , Rahmat Kurniawan , Henry Setiyanto
{"title":"Facile sunlight-irradiation mediated green synthesis of highly stable silver nanoparticles using Archidendron bubalinum pods extract for antibacterial activity application","authors":"Muhamad Allan Serunting ,&nbsp;Muhammad Ali Zulfikar ,&nbsp;Dian Ayu Setyorini ,&nbsp;Wa Ode Sri Rizki ,&nbsp;Rahmat Kurniawan ,&nbsp;Henry Setiyanto","doi":"10.1016/j.cscee.2024.100811","DOIUrl":null,"url":null,"abstract":"<div><p>The current study successfully reported biosynthesized silver nanoparticles (bio-AgNPs) using an efficient green route, employing <em>Archidendron bubalinum</em> pods extract as reducing and stabilizing agent under sunlight irradiation. <em>A. bubalinum</em> pod extract contains several fatty acid macromolecules, such as palmitic acid, stearic acid, cinnamic acid, and oleic acid. Those compounds contain hydroxyl and carboxyl groups, which play a crucial role in the reduction process of Ag ions to form Ag nanoparticles. UV–Visible spectrophotometry confirmed the formation of bio-AgNPs. The Energy Dispersive X-ray spectroscopy (EDS) and X-ray Diffraction (XRD) also supported the bio-AgNPs formation, consisting of 67.42 % of Ag in a crystalline form. Meanwhile, the materials size was confirmed by Dynamic Light Scattering (DLS), resulting in an average size of 58.9 ± 7.6 nm. This result aligned with Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM), and was confirmed that the material had spherical AgNPs capped with a thin layer. Moreover, this method resulted in stable bio-AgNPs with a surface charge of −32.4 ± 0.35 mV that were stable for over 3 months. Further, the materials were tested against <em>Staphylococcus aureus</em> ATCC6633 and Gram-negative <em>Escherichia coli</em> ATCC6633 bacteria using inhibition test, MIC, and MBC, demonstrating a good inhibition.</p></div>","PeriodicalId":34388,"journal":{"name":"Case Studies in Chemical and Environmental Engineering","volume":"10 ","pages":"Article 100811"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666016424002056/pdfft?md5=adf3d097f2c13527f2e2d12797e219b2&pid=1-s2.0-S2666016424002056-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Chemical and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666016424002056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The current study successfully reported biosynthesized silver nanoparticles (bio-AgNPs) using an efficient green route, employing Archidendron bubalinum pods extract as reducing and stabilizing agent under sunlight irradiation. A. bubalinum pod extract contains several fatty acid macromolecules, such as palmitic acid, stearic acid, cinnamic acid, and oleic acid. Those compounds contain hydroxyl and carboxyl groups, which play a crucial role in the reduction process of Ag ions to form Ag nanoparticles. UV–Visible spectrophotometry confirmed the formation of bio-AgNPs. The Energy Dispersive X-ray spectroscopy (EDS) and X-ray Diffraction (XRD) also supported the bio-AgNPs formation, consisting of 67.42 % of Ag in a crystalline form. Meanwhile, the materials size was confirmed by Dynamic Light Scattering (DLS), resulting in an average size of 58.9 ± 7.6 nm. This result aligned with Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM), and was confirmed that the material had spherical AgNPs capped with a thin layer. Moreover, this method resulted in stable bio-AgNPs with a surface charge of −32.4 ± 0.35 mV that were stable for over 3 months. Further, the materials were tested against Staphylococcus aureus ATCC6633 and Gram-negative Escherichia coli ATCC6633 bacteria using inhibition test, MIC, and MBC, demonstrating a good inhibition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 Archidendron bubalinum 豆荚提取物,通过太阳光辐照介导绿色合成高稳定性银纳米粒子,用于抗菌活性应用
目前的研究成功报道了在阳光照射下,利用大叶女贞荚果提取物作为还原剂和稳定剂,采用高效绿色方法生物合成银纳米粒子(bio-AgNPs)。大叶女贞荚果提取物含有多种脂肪酸大分子,如棕榈酸、硬脂酸、肉桂酸和油酸。这些化合物含有羟基和羧基,在银离子还原形成银纳米粒子的过程中起着至关重要的作用。紫外-可见分光光度法证实了生物银纳米粒子的形成。能量色散 X 射线光谱(EDS)和 X 射线衍射(XRD)也证实了生物银纳米粒子的形成,其中 67.42% 的银呈晶体状。同时,通过动态光散射(DLS)确认了材料的尺寸,其平均尺寸为 58.9 ± 7.6 nm。这一结果与透射电子显微镜(TEM)和扫描电子显微镜(SEM)相吻合,证实该材料中的 AgNPs 呈球形,并覆盖有一层薄层。此外,通过这种方法制备的生物银纳米粒子非常稳定,表面电荷为 -32.4 ± 0.35 mV,可稳定使用 3 个月以上。此外,还利用抑菌试验、MIC 和 MBC 对金黄色葡萄球菌 ATCC6633 和革兰氏阴性大肠杆菌 ATCC6633 进行了测试,结果表明这些材料具有良好的抑菌效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Case Studies in Chemical and Environmental Engineering
Case Studies in Chemical and Environmental Engineering Engineering-Engineering (miscellaneous)
CiteScore
9.20
自引率
0.00%
发文量
103
审稿时长
40 days
期刊最新文献
A framework model to prioritize groundwater management actions based on the concept of dominant risk: An application to the state of Espírito Santo, Brazil Determination of the effect of impurity inclusions in the form of oxy-nitride phases in NiAl2O4 ceramics on resistance to high-temperature degradation during hydrogen saturation of near-surface layers Biodiesel production of WCO-neem oil and mixed using pilot plant scale with ultrasound and overhead stirred and characteristic of emissions in fire tube boiler Enhancing domestic wastewater treatment: Integrating vermifiltration and biochar for heavy metal and microplastic reduction and by-product utilization The effect of corrosion inhibitor on X-65 steel weldment in high flow rate conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1