MEFET-Based CAM/TCAM for Memory-Augmented Neural Networks

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2024-06-06 DOI:10.1109/JXCDC.2024.3410681
Sai Sanjeet;Jonathan Bird;Bibhu Datta Sahoo
{"title":"MEFET-Based CAM/TCAM for Memory-Augmented Neural Networks","authors":"Sai Sanjeet;Jonathan Bird;Bibhu Datta Sahoo","doi":"10.1109/JXCDC.2024.3410681","DOIUrl":null,"url":null,"abstract":"Memory-augmented neural networks (MANNs) require large external memories to enable long-term memory storage and retrieval. Content-addressable memory (CAM) is a type of memory used for high-speed searching applications and is well-suited for MANNs. Recent advances in exploratory nonvolatile devices have spurred the development of nonvolatile CAMs. However, these devices suffer from poor ON-OFF ratio, large write voltages, and long write times. This work proposes a nonvolatile ternary CAM (TCAM) using magnetoelectric field effect transistors (MEFETs). The energy and delay of various operations are simulated using the ASAP 7-nm predictive technology for the transistors and a Verilog-A model of the MEFET. The proposed structure achieves orders of magnitude improvement in search energy and \n<inline-formula> <tex-math>$\\gt 45\\times $ </tex-math></inline-formula>\n improvement in search energy-delay product compared with prior works. The write energy and delay are also improved by \n<inline-formula> <tex-math>$8\\times $ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$12\\times $ </tex-math></inline-formula>\n, respectively, compared with CAMs designed with other nonvolatile devices. A variability analysis is performed to study the effect of process variations on the CAM. The proposed CAM is then used to build a one-shot learning MANN and is benchmarked with the Modified National Institute of Standards and Technology (MNIST), extended MNIST (EMNIST), and labeled faces in the wild (LFW) datasets with binary embeddings, giving >99% accuracy on MNIST, a top-3 accuracy of 97.11% on the EMNIST dataset, and >97% accuracy on the LFW dataset, with embedding sizes of 16, 64, and 512, respectively. The proposed CAM is shown to be fast, energy-efficient, and scalable, making it suitable for MANNs.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10550938","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10550938/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Memory-augmented neural networks (MANNs) require large external memories to enable long-term memory storage and retrieval. Content-addressable memory (CAM) is a type of memory used for high-speed searching applications and is well-suited for MANNs. Recent advances in exploratory nonvolatile devices have spurred the development of nonvolatile CAMs. However, these devices suffer from poor ON-OFF ratio, large write voltages, and long write times. This work proposes a nonvolatile ternary CAM (TCAM) using magnetoelectric field effect transistors (MEFETs). The energy and delay of various operations are simulated using the ASAP 7-nm predictive technology for the transistors and a Verilog-A model of the MEFET. The proposed structure achieves orders of magnitude improvement in search energy and $\gt 45\times $ improvement in search energy-delay product compared with prior works. The write energy and delay are also improved by $8\times $ and $12\times $ , respectively, compared with CAMs designed with other nonvolatile devices. A variability analysis is performed to study the effect of process variations on the CAM. The proposed CAM is then used to build a one-shot learning MANN and is benchmarked with the Modified National Institute of Standards and Technology (MNIST), extended MNIST (EMNIST), and labeled faces in the wild (LFW) datasets with binary embeddings, giving >99% accuracy on MNIST, a top-3 accuracy of 97.11% on the EMNIST dataset, and >97% accuracy on the LFW dataset, with embedding sizes of 16, 64, and 512, respectively. The proposed CAM is shown to be fast, energy-efficient, and scalable, making it suitable for MANNs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 MEFET 的内存增强型神经网络 CAM/TCAM
记忆增强型神经网络(MANN)需要大型外部存储器来实现长期记忆存储和检索。内容可寻址存储器(CAM)是一种用于高速搜索应用的存储器,非常适合 MANN。最近在探索非易失性器件方面取得的进展推动了非易失性 CAM 的发展。然而,这些器件存在导通-关断比差、写入电压大和写入时间长等问题。本研究提出了一种使用磁电场效应晶体管(MEFET)的非易失三元 CAM(TCAM)。使用 ASAP 7 纳米晶体管预测技术和 MEFET 的 Verilog-A 模型模拟了各种操作的能量和延迟。与之前的研究相比,所提出的结构在搜索能量方面实现了数量级的改进,在搜索能量-延迟乘积方面实现了 45 倍的改进。与使用其他非易失性器件设计的 CAM 相比,写入能量和延迟也分别提高了 8 和 12 倍。为了研究工艺变化对 CAM 的影响,我们进行了变异性分析。提议的 CAM 随后被用于构建单次学习的 MANN,并使用二进制嵌入对修改后的美国国家标准与技术研究院 (MNIST)、扩展 MNIST (EMNIST) 和野外标记人脸 (LFW) 数据集进行了基准测试,结果表明,在嵌入大小分别为 16、64 和 512 的情况下,MNIST 的准确率大于 99%,EMNIST 数据集的前三名准确率为 97.11%,LFW 数据集的准确率大于 97%。研究表明,所提出的 CAM 速度快、能效高、可扩展,因此适用于城域网。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
Design Considerations for Sub-1-V 1T1C FeRAM Memory Circuits Heterogeneous Integration Technologies for Artificial Intelligence Applications Scaling Logic Area With Multitier Standard Cells Accuracy Improvement With Weight Mapping Strategy and Output Transformation for STT-MRAM-Based Computing-in-Memory Energy-/Carbon-Aware Evaluation and Optimization of 3-D IC Architecture With Digital Compute-in-Memory Designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1