首页 > 最新文献

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits最新文献

英文 中文
Device Nonideality-Aware Compute-in-Memory Array Architecting: Direct Voltage Sensing, I–V Symmetric Bitcell, and Padding Array
IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-02-05 DOI: 10.1109/JXCDC.2025.3539470
Jianzi Jin;Shifan Gao;Cimang Lu;Xiang Qiu;Yi Zhao
A voltage sensing compute-in-memory (CIM) architecture has been designed to improve the analog computing accuracy, and a chip on 90-nm flash platform has been successfully fabricated, with the bidirectional operation enabled by the symmetric bitcell structure. By padding the weight sum to a global value for all bit lines (BLs), the costly multiplication postprocessing can be efficiently performed with the analog operation inside the array. The BL-differential voltage output scheme has two unique invariances. First, the so-called scaling invariance allows the weight matrix to be scaled to the full range for every BL. Second, the shifting invariance allows the weight to be tuned to a larger conductance with a better I–V linearity. Combined with the distributed padding, input voltage loss can also be reduced by suppressing the IR drop. The above schemes can significantly improve the linearity and reduce the relative weight error by >50%, as confirmed in applications from MNIST to face recognition, making it a promising solution for advanced artificial intelligence (AI) and memory computing applications.
{"title":"Device Nonideality-Aware Compute-in-Memory Array Architecting: Direct Voltage Sensing, I–V Symmetric Bitcell, and Padding Array","authors":"Jianzi Jin;Shifan Gao;Cimang Lu;Xiang Qiu;Yi Zhao","doi":"10.1109/JXCDC.2025.3539470","DOIUrl":"https://doi.org/10.1109/JXCDC.2025.3539470","url":null,"abstract":"A voltage sensing compute-in-memory (CIM) architecture has been designed to improve the analog computing accuracy, and a chip on 90-nm flash platform has been successfully fabricated, with the bidirectional operation enabled by the symmetric bitcell structure. By padding the weight sum to a global value for all bit lines (BLs), the costly multiplication postprocessing can be efficiently performed with the analog operation inside the array. The BL-differential voltage output scheme has two unique invariances. First, the so-called scaling invariance allows the weight matrix to be scaled to the full range for every BL. Second, the shifting invariance allows the weight to be tuned to a larger conductance with a better I–V linearity. Combined with the distributed padding, input voltage loss can also be reduced by suppressing the IR drop. The above schemes can significantly improve the linearity and reduce the relative weight error by >50%, as confirmed in applications from MNIST to face recognition, making it a promising solution for advanced artificial intelligence (AI) and memory computing applications.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"11 ","pages":"19-24"},"PeriodicalIF":2.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10876176","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-Optimization of Power Delivery Network Design for 3-D Heterogeneous Integration of RRAM-Based Compute In-Memory Accelerators
IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-01-27 DOI: 10.1109/JXCDC.2025.3534560
Madison Manley;James Read;Ankit Kaul;Shimeng Yu;Muhannad Bakir
Three-dimensional heterogeneous integration (3D-HI) offers promising solutions for incorporating substantial embedded memory into cutting-edge analog compute-in-memory (CIM) AI accelerators, addressing the need for on-chip acceleration of large AI models. However, this approach faces challenges with power supply noise (PSN) margins due to $V_{text {DD}}$ scaling and increased power delivery network (PDN) impedance. This study demonstrates the necessity and benefits of 3D-HI for large-scale CIM accelerators, where 2-D implementations would exceed manufacturing reticle limits. Our 3-D designs achieve 39% higher energy efficiency, $8times $ higher operation density, and improved throughput through shorter vertical interconnects. We quantify steady-state IR-drop impacts in 3D-HI CIM architectures using a framework that combines PDN modeling, 3D-HI power, performance, area estimation, and behavioral modeling. We demonstrate that a drop in supply voltage to CIM arrays increases sensitivity to process, voltage, and temperature (PVT) noise. Using our framework, we model IR-drop and simulate its impact on the accuracy of ResNet-50 and ResNet-152 when classifying images from the ImageNet 1k dataset in the presence of injected PVT noise. We analyze the impact of through-silicon via (TSV) design and placement to optimize the IR-drop and classification accuracy. For ResNet architectures in 3-D integration, we demonstrate that peripheral TSV placement provides an optimal balance between interconnect complexity and performance, achieving IR-drop below 10% of $V_{text {DD}}$ while maintaining high classification accuracy.
{"title":"Co-Optimization of Power Delivery Network Design for 3-D Heterogeneous Integration of RRAM-Based Compute In-Memory Accelerators","authors":"Madison Manley;James Read;Ankit Kaul;Shimeng Yu;Muhannad Bakir","doi":"10.1109/JXCDC.2025.3534560","DOIUrl":"https://doi.org/10.1109/JXCDC.2025.3534560","url":null,"abstract":"Three-dimensional heterogeneous integration (3D-HI) offers promising solutions for incorporating substantial embedded memory into cutting-edge analog compute-in-memory (CIM) AI accelerators, addressing the need for on-chip acceleration of large AI models. However, this approach faces challenges with power supply noise (PSN) margins due to <inline-formula> <tex-math>$V_{text {DD}}$ </tex-math></inline-formula> scaling and increased power delivery network (PDN) impedance. This study demonstrates the necessity and benefits of 3D-HI for large-scale CIM accelerators, where 2-D implementations would exceed manufacturing reticle limits. Our 3-D designs achieve 39% higher energy efficiency, <inline-formula> <tex-math>$8times $ </tex-math></inline-formula> higher operation density, and improved throughput through shorter vertical interconnects. We quantify steady-state IR-drop impacts in 3D-HI CIM architectures using a framework that combines PDN modeling, 3D-HI power, performance, area estimation, and behavioral modeling. We demonstrate that a drop in supply voltage to CIM arrays increases sensitivity to process, voltage, and temperature (PVT) noise. Using our framework, we model IR-drop and simulate its impact on the accuracy of ResNet-50 and ResNet-152 when classifying images from the ImageNet 1k dataset in the presence of injected PVT noise. We analyze the impact of through-silicon via (TSV) design and placement to optimize the IR-drop and classification accuracy. For ResNet architectures in 3-D integration, we demonstrate that peripheral TSV placement provides an optimal balance between interconnect complexity and performance, achieving IR-drop below 10% of <inline-formula> <tex-math>$V_{text {DD}}$ </tex-math></inline-formula> while maintaining high classification accuracy.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"11 ","pages":"10-18"},"PeriodicalIF":2.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10854426","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Vol. 10 探索固态计算器件和电路的IEEE杂志第10卷
IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-01-17 DOI: 10.1109/JXCDC.2025.3531616
{"title":"2024 Index IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Vol. 10","authors":"","doi":"10.1109/JXCDC.2025.3531616","DOIUrl":"https://doi.org/10.1109/JXCDC.2025.3531616","url":null,"abstract":"","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"10 ","pages":"187-194"},"PeriodicalIF":2.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10845029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits publication information 探索性固态计算器件和电路IEEE杂志出版信息
IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-01-16 DOI: 10.1109/JXCDC.2024.3499815
{"title":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits publication information","authors":"","doi":"10.1109/JXCDC.2024.3499815","DOIUrl":"https://doi.org/10.1109/JXCDC.2024.3499815","url":null,"abstract":"","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"10 ","pages":"C2-C2"},"PeriodicalIF":2.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10844007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
INFORMATION FOR AUTHORS 作者信息
IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-01-16 DOI: 10.1109/JXCDC.2024.3499819
{"title":"INFORMATION FOR AUTHORS","authors":"","doi":"10.1109/JXCDC.2024.3499819","DOIUrl":"https://doi.org/10.1109/JXCDC.2024.3499819","url":null,"abstract":"","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"10 ","pages":"C3-C3"},"PeriodicalIF":2.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10844024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MESO-CMOS Hybrid Circuits With Time-Multiplexing Technique for Energy and Area-Efficient Computing in Memory
IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-01-16 DOI: 10.1109/JXCDC.2025.3530906
Tzuping Huang;Linran Zhao;Yiming Han;Hai Li;Ian A. Young;Yaoyao Jia
The magnetoelectric spin orbit (MESO), one of the emerging spin devices, represents a promising alternative to complementary metal-oxide–semiconductor (CMOS) technology. MESO provides dual functionality: each device can perform logic operations while acting as a nonvolatile memory device. MESO also offers advantages, such as an ultralow supply voltage of 100 mV and the potential to vertically integrate with CMOS, which promises significant energy and area efficiency. These features support MESO’s suitability for improving the energy efficiency and area efficiency of computing-in-memory (CIM) circuits. To harness the advantages of MESO in large-scale complex circuit systems, this article presents the development of a MESO-based standard cell library. This library is critical to realize automated design, as it allows the implementation of all the basic CMOS functions with MESO, thereby enabling MESO-CMOS hybrid design in large-scale complex circuits. This article also introduces a highly area-efficient time-multiplexing technique to optimize the complex function inside CIM. Specifically, the multiplier and multiply-and-accumulate (MAC) circuits using the MESO-CMOS hybrid time-multiplexing technique reduce the area by 85% and 81%, respectively, compared to CMOS implementations.
{"title":"MESO-CMOS Hybrid Circuits With Time-Multiplexing Technique for Energy and Area-Efficient Computing in Memory","authors":"Tzuping Huang;Linran Zhao;Yiming Han;Hai Li;Ian A. Young;Yaoyao Jia","doi":"10.1109/JXCDC.2025.3530906","DOIUrl":"https://doi.org/10.1109/JXCDC.2025.3530906","url":null,"abstract":"The magnetoelectric spin orbit (MESO), one of the emerging spin devices, represents a promising alternative to complementary metal-oxide–semiconductor (CMOS) technology. MESO provides dual functionality: each device can perform logic operations while acting as a nonvolatile memory device. MESO also offers advantages, such as an ultralow supply voltage of 100 mV and the potential to vertically integrate with CMOS, which promises significant energy and area efficiency. These features support MESO’s suitability for improving the energy efficiency and area efficiency of computing-in-memory (CIM) circuits. To harness the advantages of MESO in large-scale complex circuit systems, this article presents the development of a MESO-based standard cell library. This library is critical to realize automated design, as it allows the implementation of all the basic CMOS functions with MESO, thereby enabling MESO-CMOS hybrid design in large-scale complex circuits. This article also introduces a highly area-efficient time-multiplexing technique to optimize the complex function inside CIM. Specifically, the multiplier and multiply-and-accumulate (MAC) circuits using the MESO-CMOS hybrid time-multiplexing technique reduce the area by 85% and 81%, respectively, compared to CMOS implementations.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"11 ","pages":"1-9"},"PeriodicalIF":2.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843777","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Topic on 3-D Logic and Memory for Energy Efficient Computing 面向节能计算的三维逻辑和存储器专题
IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-01-07 DOI: 10.1109/JXCDC.2024.3518312
editorial
{"title":"Special Topic on 3-D Logic and Memory for Energy Efficient Computing","authors":"editorial","doi":"10.1109/JXCDC.2024.3518312","DOIUrl":"https://doi.org/10.1109/JXCDC.2024.3518312","url":null,"abstract":"","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"10 ","pages":"iii-iv"},"PeriodicalIF":2.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10832462","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
E-MAC: Enhanced In-SRAM MAC Accuracy via Digital-to-Time Modulation E-MAC:通过数字时间调制增强sram内MAC精度
IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-12-16 DOI: 10.1109/JXCDC.2024.3518633
Saeed Seyedfaraji;Salar Shakibhamedan;Amire Seyedfaraji;Baset Mesgari;Nima Taherinejad;Axel Jantsch;Semeen Rehman
In this article, we introduce a novel technique called E-multiplication and accumulation (MAC) (EMAC), aimed at enhancing energy efficiency, reducing latency, and improving the accuracy of analog-based in-static random access memory (SRAM) MAC accelerators. Our approach involves a digital-to-time word-line (WL) modulation technique that encodes the WL voltage while preserving the necessary linear voltage drop for precise computations. This eliminates the need for an additional digital-to-analog converter (DAC) in the design. Furthermore, the SRAM-based logical weight encoding scheme we present reduces the reliance on capacitance-based techniques, which typically introduce area overhead in the circuit. This approach ensures consistent voltage drops for all equivalent cases [i.e., $(a { times} b) = (b times a)$ ], addressing a persistent issue in existing state-of-the-art methods. Compared with state-of-the-art analog-based in-SRAM techniques, our E-MAC approach demonstrates significant energy savings ( $1.89times $ ) and improved accuracy (73.25%) per MAC computation from a 1-V power supply, while achieving a $11.84times $ energy efficiency improvement over baseline digital approaches. Our application analysis shows a marginal overall reduction in accuracy, i.e., a 0.1% and 0.17% reduction for LeNet5-based CNN and VGG16, respectively, when trained on the MNIST and ImageNet datasets.
在本文中,我们介绍了一种称为e乘法和积累(MAC) (EMAC)的新技术,旨在提高基于模拟的静态随机存取存储器(SRAM) MAC加速器的能源效率、减少延迟和提高准确性。我们的方法涉及一种数字到时间字线(WL)调制技术,该技术对WL电压进行编码,同时保留精确计算所需的线性压降。这消除了在设计中需要额外的数模转换器(DAC)。此外,我们提出的基于sram的逻辑权重编码方案减少了对基于电容的技术的依赖,这些技术通常会在电路中引入面积开销。这种方法确保了所有等效情况下的一致电压降[即,$(a {times} b) = (b times a)$],解决了现有最先进方法中持续存在的问题。与最先进的基于模拟的sram技术相比,我们的E-MAC方法在1 v电源的每个MAC计算中显示出显着的节能(1.89美元)和提高的精度(73.25%),同时实现了11.84美元的能源效率提高。我们的应用分析显示,当在MNIST和ImageNet数据集上训练时,基于lenet5的CNN和基于VGG16的准确率分别降低了0.1%和0.17%。
{"title":"E-MAC: Enhanced In-SRAM MAC Accuracy via Digital-to-Time Modulation","authors":"Saeed Seyedfaraji;Salar Shakibhamedan;Amire Seyedfaraji;Baset Mesgari;Nima Taherinejad;Axel Jantsch;Semeen Rehman","doi":"10.1109/JXCDC.2024.3518633","DOIUrl":"https://doi.org/10.1109/JXCDC.2024.3518633","url":null,"abstract":"In this article, we introduce a novel technique called E-multiplication and accumulation (MAC) (EMAC), aimed at enhancing energy efficiency, reducing latency, and improving the accuracy of analog-based in-static random access memory (SRAM) MAC accelerators. Our approach involves a digital-to-time word-line (WL) modulation technique that encodes the WL voltage while preserving the necessary linear voltage drop for precise computations. This eliminates the need for an additional digital-to-analog converter (DAC) in the design. Furthermore, the SRAM-based logical weight encoding scheme we present reduces the reliance on capacitance-based techniques, which typically introduce area overhead in the circuit. This approach ensures consistent voltage drops for all equivalent cases [i.e., \u0000<inline-formula> <tex-math>$(a { times} b) = (b times a)$ </tex-math></inline-formula>\u0000], addressing a persistent issue in existing state-of-the-art methods. Compared with state-of-the-art analog-based in-SRAM techniques, our E-MAC approach demonstrates significant energy savings (\u0000<inline-formula> <tex-math>$1.89times $ </tex-math></inline-formula>\u0000) and improved accuracy (73.25%) per MAC computation from a 1-V power supply, while achieving a \u0000<inline-formula> <tex-math>$11.84times $ </tex-math></inline-formula>\u0000 energy efficiency improvement over baseline digital approaches. Our application analysis shows a marginal overall reduction in accuracy, i.e., a 0.1% and 0.17% reduction for LeNet5-based CNN and VGG16, respectively, when trained on the MNIST and ImageNet datasets.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"10 ","pages":"178-186"},"PeriodicalIF":2.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10804123","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of a Plasmon-Based Optical Integrated Circuit for Error-Tolerant Streaming Applications 基于等离子体的容错流应用光学集成电路的评价
IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-12-04 DOI: 10.1109/JXCDC.2024.3510684
Samantha Lubaba Noor;Xuan Wu;Dennis Lin;Pol van Dorpe;Francky Catthoor;Patrick Reynaert;Azad Naeemi
In this work, we have designed and modeled an integrated plasmonic computing module, which operates at 200 GHz clock frequency for high-end streaming algorithm applications. Our work includes designing the individual optical components (modulator, logic gate, and photodetector) and high-speed electronic driver circuits and integrating the components considering their interactions. We have also holistically evaluated the system-level performance of the computing module, taking into account various factors such as power consumption, operational speed, physical footprint, and average temperature. Through rigorous numerical analyses, we have found that with the existing technology and available materials, the plasmonic computing module can best achieve a bit-error-ratio (BER) of $10^{-1}$ . The performance can be improved by using a high electrooptic coefficient material in the phase shifter and increasing the driver circuit’s swing to greater than 1 V.
在这项工作中,我们设计并建模了一个集成的等离子体计算模块,该模块工作在200 GHz时钟频率下,用于高端流算法应用。我们的工作包括设计单个光学元件(调制器,逻辑门和光电探测器)和高速电子驱动电路,并考虑到它们的相互作用集成组件。我们还全面评估了计算模块的系统级性能,考虑了各种因素,如功耗、运行速度、物理占用空间和平均温度。通过严格的数值分析,我们发现在现有的技术和可用的材料下,等离子体计算模块可以达到10^{-1}$的最佳误码率(BER)。通过在移相器中使用高电光系数的材料,并将驱动电路的摆幅增加到大于1v,可以提高移相器的性能。
{"title":"Evaluation of a Plasmon-Based Optical Integrated Circuit for Error-Tolerant Streaming Applications","authors":"Samantha Lubaba Noor;Xuan Wu;Dennis Lin;Pol van Dorpe;Francky Catthoor;Patrick Reynaert;Azad Naeemi","doi":"10.1109/JXCDC.2024.3510684","DOIUrl":"https://doi.org/10.1109/JXCDC.2024.3510684","url":null,"abstract":"In this work, we have designed and modeled an integrated plasmonic computing module, which operates at 200 GHz clock frequency for high-end streaming algorithm applications. Our work includes designing the individual optical components (modulator, logic gate, and photodetector) and high-speed electronic driver circuits and integrating the components considering their interactions. We have also holistically evaluated the system-level performance of the computing module, taking into account various factors such as power consumption, operational speed, physical footprint, and average temperature. Through rigorous numerical analyses, we have found that with the existing technology and available materials, the plasmonic computing module can best achieve a bit-error-ratio (BER) of \u0000<inline-formula> <tex-math>$10^{-1}$ </tex-math></inline-formula>\u0000. The performance can be improved by using a high electrooptic coefficient material in the phase shifter and increasing the driver circuit’s swing to greater than 1 V.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"10 ","pages":"170-177"},"PeriodicalIF":2.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10777494","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferroelectric Transistor-Based Synaptic Crossbar Arrays: The Impact of Ferroelectric Thickness and Device-Circuit Interactions 基于铁电晶体管的突触横杆阵列:铁电厚度和器件电路相互作用的影响
IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-11-18 DOI: 10.1109/JXCDC.2024.3502053
Chunguang Wang;Sumeet Kumar Gupta
Ferroelectric transistors (FeFETs)-based crossbar arrays have shown immense promise for computing-in-memory (CiM) architectures targeted for neural accelerator designs. Offering CMOS compatibility, nonvolatility, compact bit cell, and CiM-amenable features, such as multilevel storage and voltage-driven conductance tuning, FeFETs are among the foremost candidates for synaptic devices. However, device and circuit nonideal attributes in FeFETs-based crossbar arrays cause the output currents to deviate from the expected value, which can induce error in CiM of matrix-vector multiplications (MVMs). In this article, we analyze the impact of ferroelectric thickness ( $T_{text {FE}}$ ) and cross-layer interactions in FeFETs-based synaptic crossbar arrays accounting for device-circuit nonidealities. First, based on a physics-based model of multidomain FeFETs calibrated to experiments, we analyze the impact of $T_{text {FE}}$ on the characteristics of FeFETs as synaptic devices, highlighting the connections between the multidomain physics and the synaptic attributes. Based on this analysis, we investigate the impact of $T_{text {FE}}$ in conjunction with other design parameters, such as number of bits stored per device (bit slice), wordline (WL) activation schemes, and FeFETs width on the error probability, area, energy, and latency of CiM at the array level. Our results show that FeFETs with $T_{text {FE}}$ around 7 nm achieve the highest CiM robustness, while FeFETs with $T_{text {FE}}$ around 10 nm offer the lowest CiM energy and latency. While the CiM robustness for bit slice 2 is less than bit slice 1, its robustness can be brought to a target level via additional design techniques, such as partial wordline activation and optimization of FeFETs width.
基于铁电晶体管(fefet)的交叉棒阵列在内存计算(CiM)架构中显示出巨大的前景,目标是神经加速器设计。fefet具有CMOS兼容性、非易失性、紧凑的位单元和适合cim的特性,如多电平存储和电压驱动的电导调谐,是突触器件的首选候选器件之一。然而,在基于fet的交叉棒阵列中,器件和电路的非理想属性会导致输出电流偏离期望值,从而导致矩阵向量乘法(MVMs)的CiM误差。在本文中,我们分析了铁电厚度($T_{text {FE}}$)和考虑器件电路非理想性的基于fet的突触交叉棒阵列中的跨层相互作用的影响。首先,基于实验校准的多域fet物理模型,我们分析了$T_{text {FE}}$对fet作为突触器件特性的影响,强调了多域物理与突触属性之间的联系。基于此分析,我们研究了$T_{text {FE}}$与其他设计参数(如每个器件存储的比特数(位片)、字线(WL)激活方案和fet宽度)对阵列级CiM的错误概率、面积、能量和延迟的影响。我们的研究结果表明,$T_{text {FE}}$约为7 nm的fefet具有最高的CiM鲁棒性,而$T_{text {FE}}$约为10 nm的fefet具有最低的CiM能量和延迟。虽然位片2的CiM鲁棒性低于位片1,但可以通过额外的设计技术将其鲁棒性提高到目标水平,例如部分字线激活和优化fet宽度。
{"title":"Ferroelectric Transistor-Based Synaptic Crossbar Arrays: The Impact of Ferroelectric Thickness and Device-Circuit Interactions","authors":"Chunguang Wang;Sumeet Kumar Gupta","doi":"10.1109/JXCDC.2024.3502053","DOIUrl":"https://doi.org/10.1109/JXCDC.2024.3502053","url":null,"abstract":"Ferroelectric transistors (FeFETs)-based crossbar arrays have shown immense promise for computing-in-memory (CiM) architectures targeted for neural accelerator designs. Offering CMOS compatibility, nonvolatility, compact bit cell, and CiM-amenable features, such as multilevel storage and voltage-driven conductance tuning, FeFETs are among the foremost candidates for synaptic devices. However, device and circuit nonideal attributes in FeFETs-based crossbar arrays cause the output currents to deviate from the expected value, which can induce error in CiM of matrix-vector multiplications (MVMs). In this article, we analyze the impact of ferroelectric thickness (\u0000<inline-formula> <tex-math>$T_{text {FE}}$ </tex-math></inline-formula>\u0000) and cross-layer interactions in FeFETs-based synaptic crossbar arrays accounting for device-circuit nonidealities. First, based on a physics-based model of multidomain FeFETs calibrated to experiments, we analyze the impact of \u0000<inline-formula> <tex-math>$T_{text {FE}}$ </tex-math></inline-formula>\u0000 on the characteristics of FeFETs as synaptic devices, highlighting the connections between the multidomain physics and the synaptic attributes. Based on this analysis, we investigate the impact of \u0000<inline-formula> <tex-math>$T_{text {FE}}$ </tex-math></inline-formula>\u0000 in conjunction with other design parameters, such as number of bits stored per device (bit slice), wordline (WL) activation schemes, and FeFETs width on the error probability, area, energy, and latency of CiM at the array level. Our results show that FeFETs with \u0000<inline-formula> <tex-math>$T_{text {FE}}$ </tex-math></inline-formula>\u0000 around 7 nm achieve the highest CiM robustness, while FeFETs with \u0000<inline-formula> <tex-math>$T_{text {FE}}$ </tex-math></inline-formula>\u0000 around 10 nm offer the lowest CiM energy and latency. While the CiM robustness for bit slice 2 is less than bit slice 1, its robustness can be brought to a target level via additional design techniques, such as partial wordline activation and optimization of FeFETs width.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"10 ","pages":"144-152"},"PeriodicalIF":2.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10756727","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1