{"title":"Monitoring and warning for ammonia nitrogen pollution of urban river based on neural network algorithms","authors":"Yang Zhang, Liang Liu, Shenghong Zhang, Xiaolin Zou, Jinlong Liu, Jian Guo, Ying Teng, Yu Zhang, Hengpan Duan","doi":"10.1007/s44211-024-00622-7","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia nitrogen (AN) pollution frequently occurs in urban rivers with the continuous acceleration of industrialization. Monitoring AN pollution levels and tracing its complex sources often require large-scale testing, which are time-consuming and costly. Due to the lack of reliable data samples, there were few studies investigating the feasibility of water quality prediction of AN concentration with a high fluctuation and non-stationary change through data-driven models. In this study, four deep-learning models based on neural network algorithms including artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU) were employed to predict AN concentration through some easily monitored indicators such as pH, dissolved oxygen, and conductivity, in a real AN-polluted river. The results showed that the GRU model achieved optimal prediction performance with a mean absolute error (MAE) of 0.349 and coefficient of determination (<i>R</i><sup>2</sup>) of 0.792. Furthermore, it was found that data preprocessing by the VMD technique improved the prediction accuracy of the GRU model, resulting in an <i>R</i><sup>2</sup> value of 0.822. The prediction model effectively detected and warned against abnormal AN pollution (> 2 mg/L), with a Recall rate of 93.6% and Precision rate of 72.4%. This data-driven method enables reliable monitoring of AN concentration with high-frequency fluctuations and has potential applications for urban river pollution management.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s44211-024-00622-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia nitrogen (AN) pollution frequently occurs in urban rivers with the continuous acceleration of industrialization. Monitoring AN pollution levels and tracing its complex sources often require large-scale testing, which are time-consuming and costly. Due to the lack of reliable data samples, there were few studies investigating the feasibility of water quality prediction of AN concentration with a high fluctuation and non-stationary change through data-driven models. In this study, four deep-learning models based on neural network algorithms including artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU) were employed to predict AN concentration through some easily monitored indicators such as pH, dissolved oxygen, and conductivity, in a real AN-polluted river. The results showed that the GRU model achieved optimal prediction performance with a mean absolute error (MAE) of 0.349 and coefficient of determination (R2) of 0.792. Furthermore, it was found that data preprocessing by the VMD technique improved the prediction accuracy of the GRU model, resulting in an R2 value of 0.822. The prediction model effectively detected and warned against abnormal AN pollution (> 2 mg/L), with a Recall rate of 93.6% and Precision rate of 72.4%. This data-driven method enables reliable monitoring of AN concentration with high-frequency fluctuations and has potential applications for urban river pollution management.
期刊介绍:
Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods.
This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.