{"title":"A general analytical approach to the thermoelastic analysis of asymmetric anisotropic nanoplate with polygonal holes","authors":"Vahid Zeighami, Mohammad Jafari, Holm Altenbach","doi":"10.1007/s00161-024-01309-0","DOIUrl":null,"url":null,"abstract":"<div><p>The structural complexity of high-tech industries is often compromised by a combination of thermal, mechanical, and geometric weaknesses. New generation materials and engineering the structure of materials are among the techniques that engineers employ to eliminate these effects. In this study, a comprehensive analysis solution is derived using Lekhnitskii’s complex variable approach with the use of general mapping functions, the concept of functionally graded materials (FGMs), and holomorphic functions in the form of Laurent series. This general solution is used for the thermoelastic analysis of perforated functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates with polygonal hole. A refined-calibrated rule of mixtures is used to approximate the material property of FG-CNTRC plates according to gradational changes in direction of thickness and available molecular dynamics simulations results. After validation of present analytical solution results with finite element analysis results and available mechanical analysis of composite plates results, stress and moment resultants due to remoting heat flux-mechanical loading is studied. The effect of FG-CNTRC material properties, heat flux condition, and four parameters affecting the shape of the polygonal holes has been investigated. During the present parametric analysis, the results clearly show that the parameters related to the FG-CNTRC material properties, flux conditions, and hole geometry each provide a reliable tool for designers to influence the stress and moment resultants to minimize undesirable stresses. This general formulation is able to calculate thermoelastic parameters (thermal and mechanical parameters, separately) for the generalized problems of the FGM plate or composite laminates with a polygonal hole.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 6","pages":"1455 - 1480"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01309-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The structural complexity of high-tech industries is often compromised by a combination of thermal, mechanical, and geometric weaknesses. New generation materials and engineering the structure of materials are among the techniques that engineers employ to eliminate these effects. In this study, a comprehensive analysis solution is derived using Lekhnitskii’s complex variable approach with the use of general mapping functions, the concept of functionally graded materials (FGMs), and holomorphic functions in the form of Laurent series. This general solution is used for the thermoelastic analysis of perforated functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates with polygonal hole. A refined-calibrated rule of mixtures is used to approximate the material property of FG-CNTRC plates according to gradational changes in direction of thickness and available molecular dynamics simulations results. After validation of present analytical solution results with finite element analysis results and available mechanical analysis of composite plates results, stress and moment resultants due to remoting heat flux-mechanical loading is studied. The effect of FG-CNTRC material properties, heat flux condition, and four parameters affecting the shape of the polygonal holes has been investigated. During the present parametric analysis, the results clearly show that the parameters related to the FG-CNTRC material properties, flux conditions, and hole geometry each provide a reliable tool for designers to influence the stress and moment resultants to minimize undesirable stresses. This general formulation is able to calculate thermoelastic parameters (thermal and mechanical parameters, separately) for the generalized problems of the FGM plate or composite laminates with a polygonal hole.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.