Kanishka Singh, Ka Hei Lee, Daniel Peláez, Annika Bande
{"title":"Accelerating wavepacket propagation with machine learning","authors":"Kanishka Singh, Ka Hei Lee, Daniel Peláez, Annika Bande","doi":"10.1002/jcc.27443","DOIUrl":null,"url":null,"abstract":"<p>In this work, we discuss the use of a recently introduced machine learning (ML) technique known as Fourier neural operators (FNO) as an efficient alternative to the <i>traditional</i> solution of the time-dependent Schrödinger equation (TDSE). FNOs are ML models which are employed in the approximated solution of partial differential equations. For a wavepacket propagating in an anharmonic potential and for a tunneling system, we show that the FNO approach can accurately and faithfully model wavepacket propagation via the density. Additionally, we demonstrate that FNOs can be a suitable replacement for traditional TDSE solvers in cases where the results of the quantum dynamical simulation are required repeatedly such as in the case of parameter optimization problems (e.g., control). The speed-up from the FNO method allows for its combination with the Markov-chain Monte Carlo approach in applications that involve solving inverse problems such as optimal and coherent laser control of the outcome of dynamical processes.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 28","pages":"2360-2373"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.27443","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27443","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we discuss the use of a recently introduced machine learning (ML) technique known as Fourier neural operators (FNO) as an efficient alternative to the traditional solution of the time-dependent Schrödinger equation (TDSE). FNOs are ML models which are employed in the approximated solution of partial differential equations. For a wavepacket propagating in an anharmonic potential and for a tunneling system, we show that the FNO approach can accurately and faithfully model wavepacket propagation via the density. Additionally, we demonstrate that FNOs can be a suitable replacement for traditional TDSE solvers in cases where the results of the quantum dynamical simulation are required repeatedly such as in the case of parameter optimization problems (e.g., control). The speed-up from the FNO method allows for its combination with the Markov-chain Monte Carlo approach in applications that involve solving inverse problems such as optimal and coherent laser control of the outcome of dynamical processes.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.