Mechanism of antibacterial phytoconstituents: an updated review.

IF 2.3 3区 生物学 Q3 MICROBIOLOGY Archives of Microbiology Pub Date : 2024-06-24 DOI:10.1007/s00203-024-04035-y
Sageer Abass, Rabea Parveen, Mohammad Irfan, Zoya Malik, Syed Akhtar Husain, Sayeed Ahmad
{"title":"Mechanism of antibacterial phytoconstituents: an updated review.","authors":"Sageer Abass, Rabea Parveen, Mohammad Irfan, Zoya Malik, Syed Akhtar Husain, Sayeed Ahmad","doi":"10.1007/s00203-024-04035-y","DOIUrl":null,"url":null,"abstract":"<p><p>The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies.</p>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00203-024-04035-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗菌植物成分的机理:最新综述。
多重抗药性细菌的增加大大降低了抗生素的有效性,从而加剧了治疗失败的程度。植物成分是抗药性修饰载体的特殊替代品。植物似乎是发现新型抗菌化合物的一口深井。这是因为植物具有许多诱人的特性,它们易于获取且价格低廉,从植物中提取的提取物或化学物质通常具有显著的抗感染作用,而且很少会引起严重的不良反应。植物化学物质种类繁多,其化学结构各不相同,既能提供新的抗菌机制,又能为我们提供细菌细胞内部的不同靶点。它们可以直接影响细菌或与致病性的关键事件一起发挥作用,从而降低细菌产生抗药性的能力。丰富的植物成分对多重耐药性细菌具有不同的作用机制。总之,本综述将深入探讨植物成分作为细菌感染(尤其是由多重耐药菌株引起的细菌感染)替代疗法的潜力。通过研究该领域的研究现状,本综述将阐明未来开发新型抗菌疗法的潜在方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Microbiology
Archives of Microbiology 生物-微生物学
CiteScore
4.90
自引率
3.60%
发文量
601
审稿时长
3 months
期刊介绍: Research papers must make a significant and original contribution to microbiology and be of interest to a broad readership. The results of any experimental approach that meets these objectives are welcome, particularly biochemical, molecular genetic, physiological, and/or physical investigations into microbial cells and their interactions with their environments, including their eukaryotic hosts. Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published. Theoretical papers and those that report on the analysis or ''mining'' of data are acceptable in principle if new information, interpretations, or hypotheses emerge.
期刊最新文献
Genetic and molecular characterization of fit95 mutation of Escherichia coli: evidence that fit95 is an allele of pheT. Paracraurococcus lichenis sp. nov., isolated from lichen in Thailand. Antimicrobial peptide-based strategies to overcome antimicrobial resistance. Population distribution characteristics of mating type genes and genetic stability in Morchella sextelata. Effect of Staphylococcus aureus colonization and immune defects on the pathogenesis of atopic dermatitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1