Pub Date : 2024-11-09DOI: 10.1007/s00203-024-04190-2
Kang Wei, Jin-Li Ding, Hang-Rong Xu, Ming-Guang Feng, Sheng-Hua Ying
Entomopathogenic fungi excrete a group of proteins to assimilate nutrients and defeat the host immune defense. Functional secretory signal sequences are needed for efficient secretion of the virulence-related proteins in recombinant strain. In this study, secretome analysis was used to explore the secreted proteins of Beauveria bassiana. Enrichment analysis indicated that B. bassiana secretome was mainly associated with metabolism of glucoside, polysaccharide, extracellular ester compound, and so on. In addition, proteins associated with biogenesis of cellular components were also enriched, including those involved in biogenesis of cell wall and vacuole. Then, four secretory signal sequences were functionally verified with green fluorescent protein as reporter. Finally, a signal sequence was used to excrete three insect venom protein serpins in B. bassiana, in which over-expression of serpin 8 gene resulted in a significant increase in fungal virulence. This study highlights that functional secretory signal sequences are potential molecular elements useful in excretion of virulence-related proteins in insect pathogenic fungi.
昆虫病原真菌会排泄一组蛋白质,以吸收营养并击败宿主的免疫防御。在重组菌株中有效分泌毒力相关蛋白需要功能性分泌信号序列。本研究利用分泌组分析来探索 Beauveria bassiana 的分泌蛋白。富集分析表明,B. bassiana分泌组主要与葡萄糖苷、多糖、胞外酯类化合物等的代谢有关。此外,还富集了与细胞成分的生物生成有关的蛋白质,包括参与细胞壁和液泡生物生成的蛋白质。然后,以绿色荧光蛋白为报告基因,对四个分泌信号序列进行了功能验证。最后,利用一个信号序列在 B. bassiana 中排泄三种昆虫毒液蛋白血清素,其中血清素 8 基因的过度表达导致真菌毒力显著增强。这项研究强调,功能性分泌信号序列是昆虫致病真菌排泄毒力相关蛋白的潜在分子元素。
{"title":"Exploring secretory signal sequences useful in excreting recombinant proteins in Beauveria bassiana as biocontrol fungus","authors":"Kang Wei, Jin-Li Ding, Hang-Rong Xu, Ming-Guang Feng, Sheng-Hua Ying","doi":"10.1007/s00203-024-04190-2","DOIUrl":"10.1007/s00203-024-04190-2","url":null,"abstract":"<div><p>Entomopathogenic fungi excrete a group of proteins to assimilate nutrients and defeat the host immune defense. Functional secretory signal sequences are needed for efficient secretion of the virulence-related proteins in recombinant strain. In this study, secretome analysis was used to explore the secreted proteins of <i>Beauveria bassiana</i>. Enrichment analysis indicated that <i>B. bassiana</i> secretome was mainly associated with metabolism of glucoside, polysaccharide, extracellular ester compound, and so on. In addition, proteins associated with biogenesis of cellular components were also enriched, including those involved in biogenesis of cell wall and vacuole. Then, four secretory signal sequences were functionally verified with green fluorescent protein as reporter. Finally, a signal sequence was used to excrete three insect venom protein serpins in <i>B. bassiana</i>, in which over-expression of serpin 8 gene resulted in a significant increase in fungal virulence. This study highlights that functional secretory signal sequences are potential molecular elements useful in excretion of virulence-related proteins in insect pathogenic fungi.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1007/s00203-024-04167-1
Manas Ranjan Praharaj, Harshavardhan Budamgunta, Tejaswi Ambati, Raja Ishaq Nabi Khan, Bappaditya Dey, Ravi Kumar Gandham, G. Taru Sharma, Subeer S. Majumdar
Japanese encephalitis virus (JEV) is a mosquito-borne neurotropic virus that claims thousands of children’s lives globally every year, causing neuropsychiatric sequelae. While neuronal cell pathogenesis is a terminal consequence of JEV infection, the virus hijacks macrophages during initial replication and propagation, making macrophages critical cells of host immune defense that dictate the outcomes of infection. Though a plethora of studies have been reported using various neuronal and immune cells, a global response of human macrophages to JEV infection is yet to be explored. In this study, we assessed the kinetics of global proteome dysregulation employing an in vitro JEV infection model using human monocyte-derived macrophages (THP-1). A comparative assessment of the proteome of the infected THP-1 cells revealed differential regulation of 428 proteins at 24 h post-infection (hpi), which was later increased to 443 by 48 h post-infection. Global gene ontology analysis of the differentially expressed proteins highlighted several critical pathways related to immune and metabolic processes that are known to play either proviral or antiviral effects during infection. Notably, several antiviral proteins, including STAT2, OAS1, MX1, MX2, RIG-I, ISG15, and ISG20, were significantly upregulated at both time points post-infection. In contrast, a considerable downregulation of BCL-2, an anti-apoptotic protein at 48hpi indicates the activation of cell death pathways. Further, gene set enrichment analysis identified the type I interferon signaling pathway as one of the top upregulated pathways following JEV infection in human macrophages. Altogether, this study demonstrates human macrophage responses to JEV infection at the proteome level for the first time, highlighting several critical and novel antiviral proteins and pathways that not only advance our understanding of anti-JEV immunity but also aid in developing strategies to control this acute global public health menace.
{"title":"Proteome modulation triggers potent antiviral response in Japanese Encephalitis Virus infected human macrophages","authors":"Manas Ranjan Praharaj, Harshavardhan Budamgunta, Tejaswi Ambati, Raja Ishaq Nabi Khan, Bappaditya Dey, Ravi Kumar Gandham, G. Taru Sharma, Subeer S. Majumdar","doi":"10.1007/s00203-024-04167-1","DOIUrl":"10.1007/s00203-024-04167-1","url":null,"abstract":"<div><p>Japanese encephalitis virus (JEV) is a mosquito-borne neurotropic virus that claims thousands of children’s lives globally every year, causing neuropsychiatric sequelae. While neuronal cell pathogenesis is a terminal consequence of JEV infection, the virus hijacks macrophages during initial replication and propagation, making macrophages critical cells of host immune defense that dictate the outcomes of infection. Though a plethora of studies have been reported using various neuronal and immune cells, a global response of human macrophages to JEV infection is yet to be explored. In this study, we assessed the kinetics of global proteome dysregulation employing an in vitro JEV infection model using human monocyte-derived macrophages (THP-1). A comparative assessment of the proteome of the infected THP-1 cells revealed differential regulation of 428 proteins at 24 h post-infection (hpi), which was later increased to 443 by 48 h post-infection. Global gene ontology analysis of the differentially expressed proteins highlighted several critical pathways related to immune and metabolic processes that are known to play either proviral or antiviral effects during infection. Notably, several antiviral proteins, including STAT2, OAS1, MX1, MX2, RIG-I, ISG15, and ISG20, were significantly upregulated at both time points post-infection. In contrast, a considerable downregulation of BCL-2, an anti-apoptotic protein at 48hpi indicates the activation of cell death pathways. Further, gene set enrichment analysis identified the type I interferon signaling pathway as one of the top upregulated pathways following JEV infection in human macrophages. Altogether, this study demonstrates human macrophage responses to JEV infection at the proteome level for the first time, highlighting several critical and novel antiviral proteins and pathways that not only advance our understanding of anti-JEV immunity but also aid in developing strategies to control this acute global public health menace.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1007/s00203-024-04188-w
Qi Zhang
The plasmid encoded mobile colistin resistance (MCRs) enzyme poses a significant challenge to the clinical efficacy of colistin, which is frequently employed as a last resort antibiotic for treating infections caused by multidrug resistant bacteria. This transferase catalyzes the addition of positively charged phosphoethanolamine to lipid A of the outer membrane of gram-negative bacteria, thereby facilitating the acquired colistin resistance. This review aims to summarize and critically discuss recent advancements in the distribution and pathogenesis of mcr-positive bacteria, as well as the various control measures available for treating these infections. In addition, the ecology of mcr genes, colistin-resistance mechanism, co-existence with other antibiotic resistant genes, and their impact on clinical treatment are also analyzed to address the colistin resistance crisis. These insights provide a comprehensive perspective on MCRs and serve as a valuable reference for future therapeutic approaches to effectively combat mcr-positive bacterial infections.