When and why is red blood cell genotyping applicable in transfusion medicine: a systematic review of the literature.

Q4 Medicine Immunohematology Pub Date : 2024-06-24 eCollection Date: 2024-06-01 DOI:10.2478/immunohematology-2024-009
Thompson J Akinbolaji
{"title":"When and why is red blood cell genotyping applicable in transfusion medicine: a systematic review of the literature.","authors":"Thompson J Akinbolaji","doi":"10.2478/immunohematology-2024-009","DOIUrl":null,"url":null,"abstract":"<p><p>This review aims to provide a better understanding of when and why red blood cell (RBC) genotyping is applicable in transfusion medicine. Articles published within the last 8 years in peer-reviewed journals were reviewed in a systematic manner. RBC genotyping has many applications in transfusion medicine including predicting a patient's antigen profile when serologic methods cannot be used, such as in a recently transfused patient, in the presence of autoantibody, or when serologic reagents are not available. RBC genotyping is used in prenatal care to determine zygosity and guide the administration of Rh immune globulin in pregnant women to prevent hemolytic disease of the fetus and newborn. In donor testing, RBC genotyping is used for resolving ABO/D discrepancies for better donor retention or for identifying donors negative for high-prevalence antigens to increase blood availability and compatibility for patients requiring rare blood. RBC genotyping is helpful to immunohematology reference laboratory staff performing complex antibody workups and is recommended for determining the antigen profiles of patients and prospective donors for accurate matching for C, E, and K in multiply transfused patients. Such testing is also used to determine patients or donors with variant alleles in the Rh blood group system. Information from this testing aides in complex antibody identification as well as sourcing rare allele-matched RBC units. While RBC genotyping is useful in transfusion medicine, there are limitations to its implementation in transfusion services, including test availability, turn-around time, and cost.</p>","PeriodicalId":13357,"journal":{"name":"Immunohematology","volume":"40 2","pages":"58-64"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunohematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/immunohematology-2024-009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

This review aims to provide a better understanding of when and why red blood cell (RBC) genotyping is applicable in transfusion medicine. Articles published within the last 8 years in peer-reviewed journals were reviewed in a systematic manner. RBC genotyping has many applications in transfusion medicine including predicting a patient's antigen profile when serologic methods cannot be used, such as in a recently transfused patient, in the presence of autoantibody, or when serologic reagents are not available. RBC genotyping is used in prenatal care to determine zygosity and guide the administration of Rh immune globulin in pregnant women to prevent hemolytic disease of the fetus and newborn. In donor testing, RBC genotyping is used for resolving ABO/D discrepancies for better donor retention or for identifying donors negative for high-prevalence antigens to increase blood availability and compatibility for patients requiring rare blood. RBC genotyping is helpful to immunohematology reference laboratory staff performing complex antibody workups and is recommended for determining the antigen profiles of patients and prospective donors for accurate matching for C, E, and K in multiply transfused patients. Such testing is also used to determine patients or donors with variant alleles in the Rh blood group system. Information from this testing aides in complex antibody identification as well as sourcing rare allele-matched RBC units. While RBC genotyping is useful in transfusion medicine, there are limitations to its implementation in transfusion services, including test availability, turn-around time, and cost.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
红细胞基因分型何时以及为何适用于输血医学:文献系统综述。
本综述旨在让人们更好地了解输血医学中何时以及为何要进行红细胞(RBC)基因分型。我们对过去 8 年中发表在同行评审期刊上的文章进行了系统性审查。红细胞基因分型在输血医学中应用广泛,包括在无法使用血清学方法时预测患者的抗原谱,如近期输血的患者、存在自身抗体的患者或无法获得血清学试剂的患者。红细胞基因分型可用于产前检查,以确定血型,指导孕妇注射 Rh 免疫球蛋白,预防胎儿和新生儿溶血性疾病。在献血者检测中,红细胞基因分型可用于解决 ABO/D 血型不一致的问题,以更好地保留献血者,或用于确定高流行抗原阴性的献血者,以增加需要稀有血液的患者的血液供应量和相容性。红细胞基因分型有助于免疫血液学参考实验室工作人员进行复杂的抗体检测,建议用于确定患者和潜在献血者的抗原谱,以准确匹配多次输血患者的 C、E 和 K。此类检测还可用于确定 Rh 血型系统中存在变异等位基因的患者或献血者。这种检测的信息有助于复杂抗体的鉴定,以及寻找稀有等位基因匹配的红细胞单位。虽然 RBC 基因分型在输血医学中很有用,但在输血服务中的应用还受到一些限制,包括检测的可用性、周转时间和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunohematology
Immunohematology Medicine-Medicine (all)
CiteScore
1.30
自引率
0.00%
发文量
18
期刊最新文献
A challenging case of hemolytic disease of the fetus and newborn (HDFN) due to anti-Ku in a K0 (Kellnull) mother. Mixed-field ABO front typing as an early sign of disease recurrence in ABO-matched stem cell transplantation. Red blood cell extended antigen typing in Omani patients with sickle cell disease to enhance daily transfusion practice. The American Rare Donor Program: 25 years supporting rare blood needs. Contents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1