Federico Nebuloni, Cyril Deroy, Peter R Cook, Edmond J Walsh
{"title":"Stable diffusion gradients in microfluidic conduits bounded by fluid walls.","authors":"Federico Nebuloni, Cyril Deroy, Peter R Cook, Edmond J Walsh","doi":"10.1038/s41378-024-00698-1","DOIUrl":null,"url":null,"abstract":"<p><p>Assays mimicking in vitro the concentration gradients triggering biological responses like those involved in fighting infections and blood clotting are essential for biomedical research. Microfluidic assays prove especially attractive as they allow precise control of gradient shape allied to a reduction in scale. Conventional microfluidic devices are fabricated using solid plastics that prevent direct access to responding cells. Fluid-walled microfluidics allows the manufacture of circuits on standard Petri dishes in seconds, coupled to simple operating methods; cell-culture medium sitting in a standard dish is confined to circuits by fluid walls made of an immiscible fluorocarbon. We develop and experimentally validate an analytical model of diffusion between two or more aqueous streams flowing at different rates into a fluid-walled conduit with the cross-section of a circular segment. Unlike solid walls, fluid walls morph during flows as pressures fall, with wall shape changing down the conduit. The model is validated experimentally for Fourier numbers < 0.1 using fluorescein diffusing between laminar streams. It enables a priori prediction of concentration gradients throughout a conduit, so allowing rapid circuit design as well as providing bio-scientists with an accurate way of predicting local concentrations of bioactive molecules around responsive and non-responsive cells.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"79"},"PeriodicalIF":7.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00698-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Assays mimicking in vitro the concentration gradients triggering biological responses like those involved in fighting infections and blood clotting are essential for biomedical research. Microfluidic assays prove especially attractive as they allow precise control of gradient shape allied to a reduction in scale. Conventional microfluidic devices are fabricated using solid plastics that prevent direct access to responding cells. Fluid-walled microfluidics allows the manufacture of circuits on standard Petri dishes in seconds, coupled to simple operating methods; cell-culture medium sitting in a standard dish is confined to circuits by fluid walls made of an immiscible fluorocarbon. We develop and experimentally validate an analytical model of diffusion between two or more aqueous streams flowing at different rates into a fluid-walled conduit with the cross-section of a circular segment. Unlike solid walls, fluid walls morph during flows as pressures fall, with wall shape changing down the conduit. The model is validated experimentally for Fourier numbers < 0.1 using fluorescein diffusing between laminar streams. It enables a priori prediction of concentration gradients throughout a conduit, so allowing rapid circuit design as well as providing bio-scientists with an accurate way of predicting local concentrations of bioactive molecules around responsive and non-responsive cells.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.