首页 > 最新文献

Microsystems & Nanoengineering最新文献

英文 中文
Contactless Braille sensing based on GaN optical devices integrated with epoxy lenses. 基于集成了环氧透镜的氮化镓光学器件的非接触式盲文传感技术。
IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-04-09 DOI: 10.1038/s41378-025-00904-8
Hongyu Cheng, Jiahao Yin, Sirui Li, Kwai Hei Li

Braille serves as an efficient means for visually impaired individuals to access textual information and engage in communication. However, the process of reading Braille can often be cumbersome and time-intensive, particularly in bidirectional human-machine interaction. In this work, a compact optical device for contactless detection of Braille is fabricated and characterized. The GaN-on-sapphire chip, which employs monolithic integration, serves as the core for both light emission and photodetection, significantly reducing its overall footprint. The incorporation of the semi-ellipsoid epoxy lens with optimized dimensions ensures consistent and accurate detection. The sensing device demonstrates high stability and fast response through its line-scanning capabilities on Braille codes. The captured signals are analyzed using a microcontroller, and the Braille recognition results are wirelessly transmitted to a portable mobile device, enabling the conversion into audio and visual formats. This innovative design not only facilitates Braille reading but also holds the potential to advance human-machine interaction.

{"title":"Contactless Braille sensing based on GaN optical devices integrated with epoxy lenses.","authors":"Hongyu Cheng, Jiahao Yin, Sirui Li, Kwai Hei Li","doi":"10.1038/s41378-025-00904-8","DOIUrl":"https://doi.org/10.1038/s41378-025-00904-8","url":null,"abstract":"<p><p>Braille serves as an efficient means for visually impaired individuals to access textual information and engage in communication. However, the process of reading Braille can often be cumbersome and time-intensive, particularly in bidirectional human-machine interaction. In this work, a compact optical device for contactless detection of Braille is fabricated and characterized. The GaN-on-sapphire chip, which employs monolithic integration, serves as the core for both light emission and photodetection, significantly reducing its overall footprint. The incorporation of the semi-ellipsoid epoxy lens with optimized dimensions ensures consistent and accurate detection. The sensing device demonstrates high stability and fast response through its line-scanning capabilities on Braille codes. The captured signals are analyzed using a microcontroller, and the Braille recognition results are wirelessly transmitted to a portable mobile device, enabling the conversion into audio and visual formats. This innovative design not only facilitates Braille reading but also holds the potential to advance human-machine interaction.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"62"},"PeriodicalIF":7.3,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143812058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-cost optical sensors in electrified lab-on-a-disc platforms: liquid-phase boundary detection and automated diagnostics.
IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-04-07 DOI: 10.1038/s41378-025-00896-5
Vahid Kordzadeh-Kermani, Maryam Vahid, Seyed Nezameddin Ashrafizadeh, Sergio O Martinez-Chapa, Marc J Madou, Masoud Madadelahi

Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation, as well as their wide range of applications, especially in separating blood plasma and manipulating two-phase flows. However, the need to use stroboscopes or high-speed cameras for monitoring these tasks hinders the extensive use of these platforms in research and commercial settings. In this study, we introduce an innovative and cost-effective strategy for using an array of light-dependent resistors (LDRs) as optical sensors in microfluidic devices, particularly centrifugal platforms. While LDRs are attractive for their potential use as photodetectors, their bulky size frequently restricts their ability to provide high-resolution detection in microfluidic systems. Here, we use specific waveguides to direct light beams from narrow apertures onto the surface of LDRs. We integrated these LDRs into electrified Lab-on-a-Disc (eLOD) devices, with wireless connectivity to smartphones and laptops. This enables many applications, such as droplet/particle counting and velocity measurement, concentration analysis, fluidic interface detection in multiphase flows, real-time monitoring of sample volume on centrifugal platforms, and detection of blood plasma separation as an alternative to costly stroboscope devices, microscopes, and high-speed imaging. We used numerical simulations to evaluate various fluids and scenarios, which include rotation speeds of up to 50 rad/s and a range of droplet sizes. For the testbed, we used the developed eLOD device to analyze red blood cell (RBC) deformability and improve the automated detection of sickle cell anemia by monitoring differences in RBC deformability during centrifugation using the sensors' signals. In addition to sickle cell anemia, this device has the potential to facilitate low-cost automated detection of other medical conditions characterized by altered RBC deformability, such as thalassemia, malaria, and diabetes.

{"title":"Low-cost optical sensors in electrified lab-on-a-disc platforms: liquid-phase boundary detection and automated diagnostics.","authors":"Vahid Kordzadeh-Kermani, Maryam Vahid, Seyed Nezameddin Ashrafizadeh, Sergio O Martinez-Chapa, Marc J Madou, Masoud Madadelahi","doi":"10.1038/s41378-025-00896-5","DOIUrl":"10.1038/s41378-025-00896-5","url":null,"abstract":"<p><p>Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation, as well as their wide range of applications, especially in separating blood plasma and manipulating two-phase flows. However, the need to use stroboscopes or high-speed cameras for monitoring these tasks hinders the extensive use of these platforms in research and commercial settings. In this study, we introduce an innovative and cost-effective strategy for using an array of light-dependent resistors (LDRs) as optical sensors in microfluidic devices, particularly centrifugal platforms. While LDRs are attractive for their potential use as photodetectors, their bulky size frequently restricts their ability to provide high-resolution detection in microfluidic systems. Here, we use specific waveguides to direct light beams from narrow apertures onto the surface of LDRs. We integrated these LDRs into electrified Lab-on-a-Disc (eLOD) devices, with wireless connectivity to smartphones and laptops. This enables many applications, such as droplet/particle counting and velocity measurement, concentration analysis, fluidic interface detection in multiphase flows, real-time monitoring of sample volume on centrifugal platforms, and detection of blood plasma separation as an alternative to costly stroboscope devices, microscopes, and high-speed imaging. We used numerical simulations to evaluate various fluids and scenarios, which include rotation speeds of up to 50 rad/s and a range of droplet sizes. For the testbed, we used the developed eLOD device to analyze red blood cell (RBC) deformability and improve the automated detection of sickle cell anemia by monitoring differences in RBC deformability during centrifugation using the sensors' signals. In addition to sickle cell anemia, this device has the potential to facilitate low-cost automated detection of other medical conditions characterized by altered RBC deformability, such as thalassemia, malaria, and diabetes.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"61"},"PeriodicalIF":7.3,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143803542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidic contact lens: fabrication approaches and applications.
IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-04-03 DOI: 10.1038/s41378-025-00909-3
Aravind M, Ankur Saxena, Dhaneshwar Mishra, Kulwant Singh, Sajan D George

Microfluidic contact lenses integrate microscale features that can efficiently and precisely manipulate, interact, and analyze the small volumes of tears available in the limited accessible space for the lens in the eye. The microfluidic network on contact lenses allows the miniaturization of biochemical operations on the wealth of physiological information available in the eye. Sensors integrated into channels enable real-time monitoring of ocular parameters, including glucose, pH, electrolytes, or other biomarkers. Additionally, microchannel-integrated contact lenses have demonstrated potential as power-free, continuous intraocular pressure monitoring platforms for the effective management of glaucoma. Furthermore, the controlled release of medications directly onto the eye from microfluidic contact lenses enhances therapeutic efficacy by increasing bioavailability. Despite current challenges such as scalable fabrication techniques, microfluidic contact lenses hold immense promise for ocular health, bridging the gap between diagnostics and treatment. This review summarizes the progress made in the design and fabrication of microfluidic contact lenses, with a special emphasis on the methods adopted to fabricate microfluidic contact lenses. Furthermore, the various applications of microfluidic contact lenses, ocular disease diagnosis, and drug delivery in particular are discussed in detail. Aside from outlining the state-of-the-art research activities in this area, challenges and future directions are discussed here.

微流体隐形眼镜集成了微尺度功能,可在眼内镜片有限的可接触空间内高效、精确地操作、交互和分析少量泪液。通过隐形眼镜上的微流体网络,可以对眼球中的大量生理信息进行微型生化操作。集成在通道中的传感器可以实时监测眼部参数,包括葡萄糖、pH 值、电解质或其他生物标记物。此外,集成了微通道的隐形眼镜已证明具有作为无电源、持续眼压监测平台的潜力,可有效控制青光眼。此外,从微流体接触镜中直接向眼睛控制释放药物,可提高生物利用率,从而增强疗效。尽管目前存在可扩展的制造技术等挑战,但微流控接触镜在眼部健康方面前景广阔,是诊断和治疗之间的桥梁。本综述总结了微流控隐形眼镜设计和制造方面取得的进展,特别强调了制造微流控隐形眼镜所采用的方法。此外,还详细讨论了微流控隐形眼镜的各种应用、眼部疾病诊断,特别是药物输送。除了概述该领域的最新研究活动外,还讨论了面临的挑战和未来的发展方向。
{"title":"Microfluidic contact lens: fabrication approaches and applications.","authors":"Aravind M, Ankur Saxena, Dhaneshwar Mishra, Kulwant Singh, Sajan D George","doi":"10.1038/s41378-025-00909-3","DOIUrl":"10.1038/s41378-025-00909-3","url":null,"abstract":"<p><p>Microfluidic contact lenses integrate microscale features that can efficiently and precisely manipulate, interact, and analyze the small volumes of tears available in the limited accessible space for the lens in the eye. The microfluidic network on contact lenses allows the miniaturization of biochemical operations on the wealth of physiological information available in the eye. Sensors integrated into channels enable real-time monitoring of ocular parameters, including glucose, pH, electrolytes, or other biomarkers. Additionally, microchannel-integrated contact lenses have demonstrated potential as power-free, continuous intraocular pressure monitoring platforms for the effective management of glaucoma. Furthermore, the controlled release of medications directly onto the eye from microfluidic contact lenses enhances therapeutic efficacy by increasing bioavailability. Despite current challenges such as scalable fabrication techniques, microfluidic contact lenses hold immense promise for ocular health, bridging the gap between diagnostics and treatment. This review summarizes the progress made in the design and fabrication of microfluidic contact lenses, with a special emphasis on the methods adopted to fabricate microfluidic contact lenses. Furthermore, the various applications of microfluidic contact lenses, ocular disease diagnosis, and drug delivery in particular are discussed in detail. Aside from outlining the state-of-the-art research activities in this area, challenges and future directions are discussed here.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"59"},"PeriodicalIF":7.3,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968888/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface-enhanced spectroscopy technology based on metamaterials.
IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-04-03 DOI: 10.1038/s41378-025-00905-7
Dongxiao Li, Xueyuan Wu, Ziwei Chen, Tao Liu, Xiaojing Mu

Surface-enhanced spectroscopy technology based on metamaterials has flourished in recent years, and the use of artificially designed subwavelength structures can effectively regulate light waves and electromagnetic fields, making it a valuable platform for sensing applications. With the continuous improvement of theory, several effective universal modes of metamaterials have gradually formed, including localized surface plasmon resonance (LSPR), Mie resonance, bound states in the continuum (BIC), and Fano resonance. This review begins by summarizing these core resonance mechanisms, followed by a comprehensive overview of six main surface-enhanced spectroscopy techniques across the electromagnetic spectrum: surface-enhanced fluorescence (SEF), surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), terahertz (THz) sensing, refractive index (RI) sensing, and chiral sensing. These techniques cover a wide spectral range and address various optical characteristics, enabling the detection of molecular fingerprints, structural chirality, and refractive index changes. Additionally, this review summarized the combined use of different enhanced spectra, the integration with other advanced technologies, and the status of miniaturized metamaterial systems. Finally, we assess current challenges and future directions. Looking to the future, we anticipate that metamaterial-based surface-enhanced spectroscopy will play a transformative role in real-time, on-site detection across scientific, environmental, and biomedical fields.

{"title":"Surface-enhanced spectroscopy technology based on metamaterials.","authors":"Dongxiao Li, Xueyuan Wu, Ziwei Chen, Tao Liu, Xiaojing Mu","doi":"10.1038/s41378-025-00905-7","DOIUrl":"10.1038/s41378-025-00905-7","url":null,"abstract":"<p><p>Surface-enhanced spectroscopy technology based on metamaterials has flourished in recent years, and the use of artificially designed subwavelength structures can effectively regulate light waves and electromagnetic fields, making it a valuable platform for sensing applications. With the continuous improvement of theory, several effective universal modes of metamaterials have gradually formed, including localized surface plasmon resonance (LSPR), Mie resonance, bound states in the continuum (BIC), and Fano resonance. This review begins by summarizing these core resonance mechanisms, followed by a comprehensive overview of six main surface-enhanced spectroscopy techniques across the electromagnetic spectrum: surface-enhanced fluorescence (SEF), surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), terahertz (THz) sensing, refractive index (RI) sensing, and chiral sensing. These techniques cover a wide spectral range and address various optical characteristics, enabling the detection of molecular fingerprints, structural chirality, and refractive index changes. Additionally, this review summarized the combined use of different enhanced spectra, the integration with other advanced technologies, and the status of miniaturized metamaterial systems. Finally, we assess current challenges and future directions. Looking to the future, we anticipate that metamaterial-based surface-enhanced spectroscopy will play a transformative role in real-time, on-site detection across scientific, environmental, and biomedical fields.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"60"},"PeriodicalIF":7.3,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969004/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-low-crosstalk silicon switches driven thermally and electrically.
IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-04-03 DOI: 10.1038/s41378-025-00911-9
Peng Bao, Chunhui Yao, Chenxi Tan, Alan Yilun Yuan, Minjia Chen, Seb J Savory, Richard Penty, Qixiang Cheng

Silicon photonic switches are widely considered as a cost-effective solution for addressing the ever-growing data traffic in datacenter networks, as they offer unique advantages such as low power consumption, low latency, small footprint and high bandwidth. Despite extensive research efforts, crosstalk in large-scale photonic circuits still poses a threat to signal integrity. In this paper, we present two designs of silicon Mach-Zehnder Interferometer (MZI) switches achieving ultra-low-crosstalk, driven thermally and electrically. Each switch fabric is optimized at both the device and circuit level to suppress crosstalk and reduce system complexity. Notably, for the first time to the best of our knowledge, we harness the inherent self-heating effect in a carrier-injection-based MZI switch to create a pair of phase shifters that offers arbitrary phase differences. Such a pair of phase shifters induces matched insertion loss at each arm, thus minimizing crosstalk. Experimentally, an ultra-low crosstalk ratio below -40 dB is demonstrated for both thermo-optic (T-O) and electro-optic (E-O) switches. The T-O switch exhibits an on-chip loss of less than 5 dB with a switching time of 500 µs, whereas the E-O switch achieves an on-chip loss as low as 8.5 dB with a switching time of under 100 ns. In addition, data transmission of a 50 Gb/s on-off keying signal is demonstrated with high fidelity on the E-O switch, showing the great potential of the proposed switch designs.

硅光子交换机具有低功耗、低延迟、占地面积小和高带宽等独特优势,被广泛认为是解决数据中心网络中日益增长的数据流量问题的经济高效的解决方案。尽管开展了大量研究工作,但大规模光子电路中的串扰仍对信号完整性构成威胁。在本文中,我们介绍了两种实现超低串扰、热驱动和电驱动的硅马赫-泽恩德干涉仪(MZI)开关设计。每种开关结构都在器件和电路层面进行了优化,以抑制串扰并降低系统复杂性。值得注意的是,据我们所知,我们首次利用基于载流子注入的 MZI 开关中固有的自加热效应,创建了一对可提供任意相位差的移相器。这样一对移相器可在每个臂上产生匹配的插入损耗,从而最大限度地减少串扰。实验证明,热-光(T-O)和电-光(E-O)开关的超低串扰比均低于-40 dB。T-O 开关的片上损耗低于 5 dB,开关时间为 500 µs,而 E-O 开关的片上损耗低至 8.5 dB,开关时间不到 100 ns。此外,E-O 交换机还高保真地演示了 50 Gb/s 开关键控信号的数据传输,显示了拟议交换机设计的巨大潜力。
{"title":"Ultra-low-crosstalk silicon switches driven thermally and electrically.","authors":"Peng Bao, Chunhui Yao, Chenxi Tan, Alan Yilun Yuan, Minjia Chen, Seb J Savory, Richard Penty, Qixiang Cheng","doi":"10.1038/s41378-025-00911-9","DOIUrl":"10.1038/s41378-025-00911-9","url":null,"abstract":"<p><p>Silicon photonic switches are widely considered as a cost-effective solution for addressing the ever-growing data traffic in datacenter networks, as they offer unique advantages such as low power consumption, low latency, small footprint and high bandwidth. Despite extensive research efforts, crosstalk in large-scale photonic circuits still poses a threat to signal integrity. In this paper, we present two designs of silicon Mach-Zehnder Interferometer (MZI) switches achieving ultra-low-crosstalk, driven thermally and electrically. Each switch fabric is optimized at both the device and circuit level to suppress crosstalk and reduce system complexity. Notably, for the first time to the best of our knowledge, we harness the inherent self-heating effect in a carrier-injection-based MZI switch to create a pair of phase shifters that offers arbitrary phase differences. Such a pair of phase shifters induces matched insertion loss at each arm, thus minimizing crosstalk. Experimentally, an ultra-low crosstalk ratio below -40 dB is demonstrated for both thermo-optic (T-O) and electro-optic (E-O) switches. The T-O switch exhibits an on-chip loss of less than 5 dB with a switching time of 500 µs, whereas the E-O switch achieves an on-chip loss as low as 8.5 dB with a switching time of under 100 ns. In addition, data transmission of a 50 Gb/s on-off keying signal is demonstrated with high fidelity on the E-O switch, showing the great potential of the proposed switch designs.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"58"},"PeriodicalIF":7.3,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968887/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virtually coupled resonators with modal dominance for improved sensitivity and bandwidth.
IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-04-03 DOI: 10.1038/s41378-025-00897-4
Zhao Zhang, Han Li, Cheng Hou, Yongcun Hao, Hemin Zhang, Honglong Chang

Mode-localized sensors have attracted significant attention due to their exceptional sensitivity and inherent ability to reject common-mode noise. This high sensitivity arises from the substantial shifts in resonator amplitudes induced by energy confinement in weakly coupled resonators. Despite their promising attributes, there has been limited research on the mechanisms of energy confinement. This paper presents both qualitative and quantitative analyses of energy confinement within weakly coupled resonators and concludes them as the concept of modal dominance. This concept elucidates that mode frequencies are predominantly dictated by the natural frequencies of the internal resonators, facilitating spatial energy confinement. Based on this modal dominance, a novel concept of virtually coupled resonators is proposed, which obviates the need for physical coupling structures. Instead, energy confinement is achieved through a frequency offset between two independent resonators, resulting in a similar amplitude ratio output and enhanced sensitivity. To further enhance performance, a double-closed-loop control scheme is developed for virtually coupled resonators, expanding the bandwidth in comparison to weakly coupled resonators. Experimental results validate the feasibility of virtually coupled resonators and the double-closed-loop control, demonstrating a 2.7-fold improvement in amplitude ratio sensitivity and at least a four-fold enhancement in bandwidth relative to weakly coupled resonators with identical parameters.

模式定位传感器因其卓越的灵敏度和固有的共模噪声抑制能力而备受关注。这种高灵敏度源于弱耦合谐振器中能量限制所引起的谐振器振幅的大幅偏移。尽管这些谐振器具有良好的特性,但有关能量限制机制的研究却十分有限。本文对弱耦合谐振器内的能量限制进行了定性和定量分析,并将其总结为模态优势概念。这一概念阐明了模态频率主要由内部谐振器的固有频率决定,从而促进了空间能量约束。基于这种模态主导性,我们提出了一种虚拟耦合谐振器的新概念,它无需物理耦合结构。取而代之的是,通过两个独立谐振器之间的频率偏移来实现能量限制,从而获得相似的振幅比输出和更高的灵敏度。为了进一步提高性能,还为实际耦合谐振器开发了双闭环控制方案,与弱耦合谐振器相比,扩大了带宽。实验结果验证了虚拟耦合谐振器和双闭环控制的可行性,与参数相同的弱耦合谐振器相比,振幅比灵敏度提高了 2.7 倍,带宽至少增加了四倍。
{"title":"Virtually coupled resonators with modal dominance for improved sensitivity and bandwidth.","authors":"Zhao Zhang, Han Li, Cheng Hou, Yongcun Hao, Hemin Zhang, Honglong Chang","doi":"10.1038/s41378-025-00897-4","DOIUrl":"10.1038/s41378-025-00897-4","url":null,"abstract":"<p><p>Mode-localized sensors have attracted significant attention due to their exceptional sensitivity and inherent ability to reject common-mode noise. This high sensitivity arises from the substantial shifts in resonator amplitudes induced by energy confinement in weakly coupled resonators. Despite their promising attributes, there has been limited research on the mechanisms of energy confinement. This paper presents both qualitative and quantitative analyses of energy confinement within weakly coupled resonators and concludes them as the concept of modal dominance. This concept elucidates that mode frequencies are predominantly dictated by the natural frequencies of the internal resonators, facilitating spatial energy confinement. Based on this modal dominance, a novel concept of virtually coupled resonators is proposed, which obviates the need for physical coupling structures. Instead, energy confinement is achieved through a frequency offset between two independent resonators, resulting in a similar amplitude ratio output and enhanced sensitivity. To further enhance performance, a double-closed-loop control scheme is developed for virtually coupled resonators, expanding the bandwidth in comparison to weakly coupled resonators. Experimental results validate the feasibility of virtually coupled resonators and the double-closed-loop control, demonstrating a 2.7-fold improvement in amplitude ratio sensitivity and at least a four-fold enhancement in bandwidth relative to weakly coupled resonators with identical parameters.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"57"},"PeriodicalIF":7.3,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A passive flow microreactor for urine creatinine test. 用于尿肌酐检测的被动流微反应器。
IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-04-02 DOI: 10.1038/s41378-025-00880-z
Dumitru Tomsa, Yang Liu, Amanda Stefanson, Xiaoou Ren, AbdulRazaq A H Sokoro, Paul Komenda, Navdeep Tangri, Rene P Zahedi, Claudio Rigatto, Francis Lin

Chronic kidney disease (CKD) significantly affects people's health and quality of life and presents a high economic burden worldwide. There are well-established biomarkers for CKD diagnosis. However, the existing routine standard tests are lab-based and governed by strict regulations. Creatinine is commonly measured as a filtration biomarker in blood to determine estimated Glomerular Filtration Rate (eGFR), as well as a normalization factor to calculate urinary Albumin-to-Creatinine Ratio (uACR) for CKD evaluation. In this study, we developed a passive flow microreactor for colorimetric urine creatinine measurement (uCR-Chip), which is highly amenable to integration with our previously developed microfluidic urine albumin assay. The combination of the 2-phase pressure compensation (2-PPC) technique and microfluidic channel network design accurately controls the fluidic mixing ratio and chemical reaction. Together with an optimized observation window (OW) design, a uniform and stable detection signal was achieved within 7 min. The color signal was measured by a simple USB microscope-based platform to quantify creatinine concentration in the sample. The combination of the custom in-house photomask production techniques and dry-film photoresist-based lithography enabled rapid iterative design optimization and precise chip fabrication. The developed assay achieved a dynamic linear detection range up to 40 mM and a lower limit of detection (LOD) of 0.521 mM, meeting the clinical precision requirements (comparable to existing point-of-care (PoC) systems). The microreactor was validated using creatinine standards spiked into commercial artificial urine that mimics physiological matrix. Our results showed acceptable recovery rate and low matrix effect, especially for the low creatinine concentration range in comparison to a commercial PoC uACR test. Altogether, the developed uCR-Chip offers a viable PoC test for CKD assessment and provides a potential platform technology to measure various disease biomarkers.

{"title":"A passive flow microreactor for urine creatinine test.","authors":"Dumitru Tomsa, Yang Liu, Amanda Stefanson, Xiaoou Ren, AbdulRazaq A H Sokoro, Paul Komenda, Navdeep Tangri, Rene P Zahedi, Claudio Rigatto, Francis Lin","doi":"10.1038/s41378-025-00880-z","DOIUrl":"10.1038/s41378-025-00880-z","url":null,"abstract":"<p><p>Chronic kidney disease (CKD) significantly affects people's health and quality of life and presents a high economic burden worldwide. There are well-established biomarkers for CKD diagnosis. However, the existing routine standard tests are lab-based and governed by strict regulations. Creatinine is commonly measured as a filtration biomarker in blood to determine estimated Glomerular Filtration Rate (eGFR), as well as a normalization factor to calculate urinary Albumin-to-Creatinine Ratio (uACR) for CKD evaluation. In this study, we developed a passive flow microreactor for colorimetric urine creatinine measurement (uCR-Chip), which is highly amenable to integration with our previously developed microfluidic urine albumin assay. The combination of the 2-phase pressure compensation (2-PPC) technique and microfluidic channel network design accurately controls the fluidic mixing ratio and chemical reaction. Together with an optimized observation window (OW) design, a uniform and stable detection signal was achieved within 7 min. The color signal was measured by a simple USB microscope-based platform to quantify creatinine concentration in the sample. The combination of the custom in-house photomask production techniques and dry-film photoresist-based lithography enabled rapid iterative design optimization and precise chip fabrication. The developed assay achieved a dynamic linear detection range up to 40 mM and a lower limit of detection (LOD) of 0.521 mM, meeting the clinical precision requirements (comparable to existing point-of-care (PoC) systems). The microreactor was validated using creatinine standards spiked into commercial artificial urine that mimics physiological matrix. Our results showed acceptable recovery rate and low matrix effect, especially for the low creatinine concentration range in comparison to a commercial PoC uACR test. Altogether, the developed uCR-Chip offers a viable PoC test for CKD assessment and provides a potential platform technology to measure various disease biomarkers.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"56"},"PeriodicalIF":7.3,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143772885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal response characteristics of convective liquid metal sensitive layers in flexible pressure sensor.
IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-04-01 DOI: 10.1038/s41378-025-00915-5
Qing Wang, Zhou Zhou, Jizhang He, Liang Zhuo, Chenlin Zhu, Wenjie Qian, Wei Shi, Daoheng Sun

The development of electronic skin, soft robots, and smart wearables has significantly driven advances in flexible pressure sensing technology. However, traditional multilayer solid-structure flexible pressure sensors encounter challenges at temperatures between 100 °C and 150 °C due to high-temperature modal distortion. Changes in the conductivity of the sensor's conductive components interfere with accurate pressure measurement. In this research, a flexible pressure sensor with a convective liquid metal sensitive layer is proposed. The sensor uses a cyclic self-cooling mechanism to lower the temperature of its conductive components, reducing the impact of external high temperatures on the pressure measurement accuracy. At a 2.8 W thermal load, the flexible sensor, with liquid metal circulating at 2.0 mL/min, exhibits a sensitivity of 0.11 kPa⁻¹ within the pressure range from 0 to 12.5 kPa, and its maximum measurable pressure is 30 kPa. In addition, the resistance of the sensor is 18.5 mΩ less than that of a stationary liquid metal sensor, representing a 38.1% reduction. The sensor proposed in this research introduces a novel strategy for pressure measurement in high-temperature applications, extending the application scope to aircraft, special robots, and hydraulic oil circuits.

{"title":"Multimodal response characteristics of convective liquid metal sensitive layers in flexible pressure sensor.","authors":"Qing Wang, Zhou Zhou, Jizhang He, Liang Zhuo, Chenlin Zhu, Wenjie Qian, Wei Shi, Daoheng Sun","doi":"10.1038/s41378-025-00915-5","DOIUrl":"10.1038/s41378-025-00915-5","url":null,"abstract":"<p><p>The development of electronic skin, soft robots, and smart wearables has significantly driven advances in flexible pressure sensing technology. However, traditional multilayer solid-structure flexible pressure sensors encounter challenges at temperatures between 100 °C and 150 °C due to high-temperature modal distortion. Changes in the conductivity of the sensor's conductive components interfere with accurate pressure measurement. In this research, a flexible pressure sensor with a convective liquid metal sensitive layer is proposed. The sensor uses a cyclic self-cooling mechanism to lower the temperature of its conductive components, reducing the impact of external high temperatures on the pressure measurement accuracy. At a 2.8 W thermal load, the flexible sensor, with liquid metal circulating at 2.0 mL/min, exhibits a sensitivity of 0.11 kPa⁻¹ within the pressure range from 0 to 12.5 kPa, and its maximum measurable pressure is 30 kPa. In addition, the resistance of the sensor is 18.5 mΩ less than that of a stationary liquid metal sensor, representing a 38.1% reduction. The sensor proposed in this research introduces a novel strategy for pressure measurement in high-temperature applications, extending the application scope to aircraft, special robots, and hydraulic oil circuits.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"55"},"PeriodicalIF":7.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermocouple-integrated resonant microcantilever for on-chip thermogravimetric (TG) and differential thermal analysis (DTA) dual characterization applications.
IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-03-26 DOI: 10.1038/s41378-024-00828-9
Yuhang Yang, Hao Jia, Zechun Li, Zhi Cao, Haozhi Zhang, Pengcheng Xu, Xinxin Li

This work presents an integrated microsensor that combines the dual characterization capabilities of thermogravimetric analysis (TGA) and differential thermal analysis (DTA). We integrated two pairs of thermocouples, heating resistors, and resonant drive/detection resistors into a single microcantilever, where the cantilever resonant frequency shifts respond to the mass change and the output voltage of the integrated thermocouples respond to the sample temperature. This integration enables programmable temperature control, temperature variation, and mass detection on a single chip. Our chip can achieve heating and cooling rates above 600 °C/min, which is significantly faster than commercial instruments with satisfactory measurement accuracy. The integrated polysilicon thermocouples bring high power responsivity of 6 V/W, making them suitable for highly sensitive DTA measurements on a chip. Moreover, the cantilever offers picogram (10-12g) level mass resolution, reducing sample consumption from milligrams to nanogram levels. Additionally, the on-chip sample heating allows for easy observation of sample morphological evolution during heating under an optical microscope. We validated the dual functionality by conducting TGA measurements on a standard sample of calcium oxalate monohydrate (CaC2O4 ∙ H2O) and DTA measurements on high-purity indium (In) and tin (Sn). The results indicate consistent measurements with the true values of the standard sample and high measurement efficiency. Our integrated cantilever chip is anticipated to have broad applications in high-performance and efficient TGA and DTA characterization.

{"title":"Thermocouple-integrated resonant microcantilever for on-chip thermogravimetric (TG) and differential thermal analysis (DTA) dual characterization applications.","authors":"Yuhang Yang, Hao Jia, Zechun Li, Zhi Cao, Haozhi Zhang, Pengcheng Xu, Xinxin Li","doi":"10.1038/s41378-024-00828-9","DOIUrl":"10.1038/s41378-024-00828-9","url":null,"abstract":"<p><p>This work presents an integrated microsensor that combines the dual characterization capabilities of thermogravimetric analysis (TGA) and differential thermal analysis (DTA). We integrated two pairs of thermocouples, heating resistors, and resonant drive/detection resistors into a single microcantilever, where the cantilever resonant frequency shifts respond to the mass change and the output voltage of the integrated thermocouples respond to the sample temperature. This integration enables programmable temperature control, temperature variation, and mass detection on a single chip. Our chip can achieve heating and cooling rates above 600 °C/min, which is significantly faster than commercial instruments with satisfactory measurement accuracy. The integrated polysilicon thermocouples bring high power responsivity of 6 V/W, making them suitable for highly sensitive DTA measurements on a chip. Moreover, the cantilever offers picogram (10<sup>-12</sup>g) level mass resolution, reducing sample consumption from milligrams to nanogram levels. Additionally, the on-chip sample heating allows for easy observation of sample morphological evolution during heating under an optical microscope. We validated the dual functionality by conducting TGA measurements on a standard sample of calcium oxalate monohydrate (CaC<sub>2</sub>O<sub>4</sub> ∙ H<sub>2</sub>O) and DTA measurements on high-purity indium (In) and tin (Sn). The results indicate consistent measurements with the true values of the standard sample and high measurement efficiency. Our integrated cantilever chip is anticipated to have broad applications in high-performance and efficient TGA and DTA characterization.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"54"},"PeriodicalIF":7.3,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937515/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143710777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation towards nanomechanical sensor array for real-time detection of complex gases.
IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-03-24 DOI: 10.1038/s41378-025-00899-2
Md Abdul Momin, Masaya Toda, Zhuqing Wang, Mai Yamazaki, Krzysztof Moorthi, Yasuaki Kawaguchi, Takahito Ono

This study presents the development and characterization of a nanomechanical gas sensor array with piezoresistive detectors for a wide range of applications. The sensors, made of silicon and polymers and integrated with the piezoresistive sensors on a silicon-on-insulator wafer, convert to electrical signals the stress caused by volume change of polymer induced by gas absorption. The fabrication of the sensors incorporates a process where Polymer A (Polyolefin), Polymer B (Fluorocarbon polymer) Polymer C (Acrylic resin), and Polymer D (Amino polymer), are deposited within silicon slits, demonstrating their distinct responses to various vapor species. These sensors show swift response times and efficient recovery periods, which makes them promising for real-time multiple gas and smell monitoring applications. An array of four nanomechanical sensors with polymers shows high repeatability and sensitivity when subjected to multiple gas exposure and turn-off cycles. The gas sensor arrays, effectively monitoring fish quality over several days, suggest a potential for determining optimal storage and early spoilage detection in perishables. The study demonstrates that the nanomechanical sensor array can accurately distinguish between different gas concentrations using principal component analysis, paving the way for real-time, automated multiple gas detection and analysis without human intervention.

{"title":"Investigation towards nanomechanical sensor array for real-time detection of complex gases.","authors":"Md Abdul Momin, Masaya Toda, Zhuqing Wang, Mai Yamazaki, Krzysztof Moorthi, Yasuaki Kawaguchi, Takahito Ono","doi":"10.1038/s41378-025-00899-2","DOIUrl":"10.1038/s41378-025-00899-2","url":null,"abstract":"<p><p>This study presents the development and characterization of a nanomechanical gas sensor array with piezoresistive detectors for a wide range of applications. The sensors, made of silicon and polymers and integrated with the piezoresistive sensors on a silicon-on-insulator wafer, convert to electrical signals the stress caused by volume change of polymer induced by gas absorption. The fabrication of the sensors incorporates a process where Polymer A (Polyolefin), Polymer B (Fluorocarbon polymer) Polymer C (Acrylic resin), and Polymer D (Amino polymer), are deposited within silicon slits, demonstrating their distinct responses to various vapor species. These sensors show swift response times and efficient recovery periods, which makes them promising for real-time multiple gas and smell monitoring applications. An array of four nanomechanical sensors with polymers shows high repeatability and sensitivity when subjected to multiple gas exposure and turn-off cycles. The gas sensor arrays, effectively monitoring fish quality over several days, suggest a potential for determining optimal storage and early spoilage detection in perishables. The study demonstrates that the nanomechanical sensor array can accurately distinguish between different gas concentrations using principal component analysis, paving the way for real-time, automated multiple gas detection and analysis without human intervention.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"53"},"PeriodicalIF":7.3,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143692711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microsystems & Nanoengineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1