Characterization of double-stranded RNA and its silencing efficiency for insects using hybrid deep-learning framework.

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Briefings in Functional Genomics Pub Date : 2024-12-06 DOI:10.1093/bfgp/elae027
Han Cheng, Liping Xu, Cangzhi Jia
{"title":"Characterization of double-stranded RNA and its silencing efficiency for insects using hybrid deep-learning framework.","authors":"Han Cheng, Liping Xu, Cangzhi Jia","doi":"10.1093/bfgp/elae027","DOIUrl":null,"url":null,"abstract":"<p><p>RNA interference (RNAi) technology is widely used in the biological prevention and control of terrestrial insects. One of the main factors with the application of RNAi in insects is the difference in RNAi efficiency, which may vary not only in different insects, but also in different genes of the same insect, and even in different double-stranded RNAs (dsRNAs) of the same gene. This work focuses on the last question and establishes a bioinformatics software that can help researchers screen for the most efficient dsRNA targeting target genes. Among insects, the red flour beetle (Tribolium castaneum) is known to be one of the most sensitive to RNAi. From iBeetle-Base, we extracted 12 027 efficient dsRNA sequences with a lethality rate of ≥20% or with experimentation-induced phenotypic changes and processed these data to correspond to specific silence efficiency. Based on the first complied novel benchmark dataset, we specifically designed a deep neural network to identify and characterize efficient dsRNA for RNAi in insects. The dna2vec word embedding model was trained to extract distributed feature representations, and three powerful modules, namely convolutional neural network, bidirectional long short-term memory network, and self-attention mechanism, were integrated to form our predictor model to characterize the extracted dsRNAs and their silencing efficiencies for T. castaneum. Our model dsRNAPredictor showed reliable performance in multiple independent tests based on different species, including both T. castaneum and Aedes aegypti. This indicates that dsRNAPredictor can facilitate prescreening for designing high-efficiency dsRNA targeting target genes of insects in advance.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"858-865"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae027","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA interference (RNAi) technology is widely used in the biological prevention and control of terrestrial insects. One of the main factors with the application of RNAi in insects is the difference in RNAi efficiency, which may vary not only in different insects, but also in different genes of the same insect, and even in different double-stranded RNAs (dsRNAs) of the same gene. This work focuses on the last question and establishes a bioinformatics software that can help researchers screen for the most efficient dsRNA targeting target genes. Among insects, the red flour beetle (Tribolium castaneum) is known to be one of the most sensitive to RNAi. From iBeetle-Base, we extracted 12 027 efficient dsRNA sequences with a lethality rate of ≥20% or with experimentation-induced phenotypic changes and processed these data to correspond to specific silence efficiency. Based on the first complied novel benchmark dataset, we specifically designed a deep neural network to identify and characterize efficient dsRNA for RNAi in insects. The dna2vec word embedding model was trained to extract distributed feature representations, and three powerful modules, namely convolutional neural network, bidirectional long short-term memory network, and self-attention mechanism, were integrated to form our predictor model to characterize the extracted dsRNAs and their silencing efficiencies for T. castaneum. Our model dsRNAPredictor showed reliable performance in multiple independent tests based on different species, including both T. castaneum and Aedes aegypti. This indicates that dsRNAPredictor can facilitate prescreening for designing high-efficiency dsRNA targeting target genes of insects in advance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用混合深度学习框架鉴定双链 RNA 及其对昆虫的沉默效率。
RNA 干扰(RNAi)技术被广泛应用于陆生昆虫的生物防治。在昆虫中应用 RNAi 的主要因素之一是 RNAi 效率的差异,不仅不同昆虫的 RNAi 效率可能不同,同一昆虫的不同基因,甚至同一基因的不同双链 RNA(dsRNA)的 RNAi 效率也可能不同。这项工作的重点是最后一个问题,并建立了一个生物信息学软件,可以帮助研究人员筛选出靶向目标基因最有效的dsRNA。众所周知,在昆虫中,红粉甲虫(Tribolium castaneum)是对 RNAi 最敏感的昆虫之一。我们从 iBeetle-Base 中提取了 12 027 个致死率≥20% 或具有实验诱导表型变化的高效 dsRNA 序列,并对这些数据进行了处理,以对应特定的沉默效率。基于首次编制的新型基准数据集,我们专门设计了一个深度神经网络,用于识别和表征昆虫 RNAi 的高效 dsRNA。我们训练了 dna2vec 字嵌入模型来提取分布式特征表征,并整合了三个强大的模块,即卷积神经网络、双向长短期记忆网络和自我注意机制,形成了我们的预测模型,以表征提取的 dsRNA 及其对 T. castaneum 的沉默效率。我们的dsRNAPredictor模型在多个基于不同物种的独立测试中表现出了可靠的性能,包括T. castaneum和埃及伊蚊。这表明 dsRNAPredictor 可以帮助预先筛选出高效的针对昆虫靶基因的 dsRNA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in Functional Genomics
Briefings in Functional Genomics BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.30
自引率
2.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data. The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.
期刊最新文献
Sesame Genomic Web Resource (SesameGWR): a well-annotated data resource for transcriptomic signatures of abiotic and biotic stress responses in sesame (Sesamum indicum L.). A comprehensive survey of dimensionality reduction and clustering methods for single-cell and spatial transcriptomics data. AMLdb: a comprehensive multi-omics platform to identify biomarkers and drug targets for acute myeloid leukemia. Advances in integrating single-cell sequencing data to unravel the mechanism of ferroptosis in cancer. Long-read RNA sequencing can probe organelle genome pervasive transcription.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1