Green production of apples delivers environmental and economic benefits in China.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Communications Pub Date : 2024-11-11 Epub Date: 2024-06-22 DOI:10.1016/j.xplc.2024.101006
Di Liu, Jiuliang Xu, Xuexian Li, Fusuo Zhang
{"title":"Green production of apples delivers environmental and economic benefits in China.","authors":"Di Liu, Jiuliang Xu, Xuexian Li, Fusuo Zhang","doi":"10.1016/j.xplc.2024.101006","DOIUrl":null,"url":null,"abstract":"<p><p>Sustainable alternative farming systems are gaining popularity worldwide because of the negative effects of conventional agriculture on global climate change and the environmental degradation caused by intensive use of synthetic inputs. The green farming system in China is an integrated production strategy that focuses on reducing chemical fertilizer use while increasing organic manure inputs. Despite their rapid growth as more sustainable systems over the past decades, green farming systems have not been systematically evaluated to date. We used apple production as a representative case to assess the sustainability of green farming systems. Across major apple-producing regions in China, green farming reduced the application of chemical fertilizer nitrogen (N) by 46.8% (from 412 to 219 kg ha<sup>-1</sup>) and increased that of manure N by 33.1% (from 171 to 227 kg ha<sup>-1</sup>) on average compared with conventional systems enhancing N use efficiency by 7.27-20.27% and reducing N losses by 8.92%-11.56%. It also slightly lowered yield by 4.34%-13.8% in four provinces. Soil fertility was improved in green orchards through increases in soil organic matter, total N, and available major nutrients. Our cradle-to-farm-gate life-cycle assessment revealed that green farming helped to mitigate greenhouse gas emissions by an average of 12.6%, potentially contributing to a reduction of 165 239 t CO<sub>2</sub> eq annually in major apple-producing areas. In addition, green farming achieved 39.3% higher profitability ($7180 ha<sup>-1</sup> year<sup>-1</sup>) at the farmer level. Our study demonstrates the potential of green production of apples for the development of sustainable agriculture in China. These findings advance our understanding of sustainable alternative farming systems and offer perspectives for the sustainable development of global agriculture.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2024.101006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sustainable alternative farming systems are gaining popularity worldwide because of the negative effects of conventional agriculture on global climate change and the environmental degradation caused by intensive use of synthetic inputs. The green farming system in China is an integrated production strategy that focuses on reducing chemical fertilizer use while increasing organic manure inputs. Despite their rapid growth as more sustainable systems over the past decades, green farming systems have not been systematically evaluated to date. We used apple production as a representative case to assess the sustainability of green farming systems. Across major apple-producing regions in China, green farming reduced the application of chemical fertilizer nitrogen (N) by 46.8% (from 412 to 219 kg ha-1) and increased that of manure N by 33.1% (from 171 to 227 kg ha-1) on average compared with conventional systems enhancing N use efficiency by 7.27-20.27% and reducing N losses by 8.92%-11.56%. It also slightly lowered yield by 4.34%-13.8% in four provinces. Soil fertility was improved in green orchards through increases in soil organic matter, total N, and available major nutrients. Our cradle-to-farm-gate life-cycle assessment revealed that green farming helped to mitigate greenhouse gas emissions by an average of 12.6%, potentially contributing to a reduction of 165 239 t CO2 eq annually in major apple-producing areas. In addition, green farming achieved 39.3% higher profitability ($7180 ha-1 year-1) at the farmer level. Our study demonstrates the potential of green production of apples for the development of sustainable agriculture in China. These findings advance our understanding of sustainable alternative farming systems and offer perspectives for the sustainable development of global agriculture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国的绿色苹果生产带来了环境和经济效益。
由于传统农业依赖大量使用合成投入品,对全球气候变化和环境退化造成了负面影响,因此可持续的替代耕作制度在全球越来越受欢迎。在中国,绿色农业系统是一种综合生产战略,尤其注重化肥减量与有机肥投入相结合。尽管作为一种更可持续的耕作制度,绿色耕作制度在过去几十年中发展迅速,但迄今为止尚未对其进行过系统评估。我们以苹果生产为代表,评估绿色农业系统的可持续性。在中国的主要苹果产区,绿色种植比传统种植平均减少化肥氮46.8%(从412千克/公顷减少到219千克/公顷),增加粪肥氮33.1%(从171千克/公顷增加到227千克/公顷),使氮的利用效率提高了7.27%到20.27%,氮的损失减少了8.92%到11.56%,但也导致四个省份的产量略低4.34%到13.8%。通过增加土壤有机质、全氮和可利用的主要养分,绿色果园的土壤肥力得到改善。我们的 "从摇篮到农场 "生命周期评估显示,绿色农业平均减少了 12.6% 的温室气体排放,每年可为苹果主产区减少 165239 吨二氧化碳当量。此外,在农民层面,绿色种植的利润率提高了 39.3%(7180 美元/公顷-1 年-1)。我们的研究证明了绿色苹果生产在中国农业绿色发展中的潜力。这些研究结果为进一步了解可持续替代农业系统和全球农业可持续发展提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Communications
Plant Communications Agricultural and Biological Sciences-Plant Science
CiteScore
15.70
自引率
5.70%
发文量
105
审稿时长
6 weeks
期刊介绍: Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.
期刊最新文献
Green production of apples delivers environmental and economic benefits in China. Microbe-induced coordination of plant iron-sulfur metabolism enhances high-light-stress tolerance of Arabidopsis. Cytokinins regulate spatially specific ethylene production to control root growth in Arabidopsis. Quantitative imaging reveals the role of MpARF proteasomal degradation during gemma germination. Rapid and dynamic detection of endogenous proteins through in locus tagging in rice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1