首页 > 最新文献

Plant Communications最新文献

英文 中文
Genetic engineering including genome editing for broad-spectrum disease resistance in crops. 基因工程,包括基因组编辑,用于作物的广谱抗病性。
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-19 DOI: 10.1016/j.xplc.2024.101195
Xinyu Han, Shumin Li, Qingdong Zeng, Peng Sun, Dousheng Wu, Jianguo Wu, Xiao Yu, Zhibing Lai, Ricky J Milne, Zhensheng Kang, Kabin Xie, Guotian Li

Plant diseases, caused by a wide range of pathogens, severely reduce crop yield, quality and pose a threat to global food security. Developing broad-spectrum resistance (BSR) in crops is a key strategy to control crop diseases and safeguard crop production. Cloning of disease-resistance (R) genes and understanding their underlying molecular mechanisms provides new genetic resources and strategies for crop breeding. Novel genetic engineering and genome editing tools have accelerated the study of BSR genes and engineering of BSR in crops, and this area represents the primary focus of this review. We first summarize recent advances in the understanding of the plant immune system. We then examine progress in understanding molecular mechanisms underlying BSR in crops. Finally, we highlight diverse strategies employed to achieve BSR, such as gene stacking to combine multiple R genes, multiplexed genome editing of susceptibility (S) genes and promoters of executor R genes, editing cis-regulatory elements for fine-tuning gene expression, RNA interference, saturation mutagenesis, and precise genomic insertions. Genetic studies and engineering of BSR accelerate breeding of disease-resistant cultivars and crop improvement, which will act to safeguard global food security.

由多种病原体引起的植物病害严重降低了作物产量和质量,并对全球粮食安全构成威胁。开发作物的广谱抗性(BSR)是控制作物病害、保障作物生产的关键策略。克隆抗病(R)基因并了解其分子机制为作物育种提供了新的遗传资源和策略。新的基因工程和基因组编辑工具加快了对作物中 BSR 基因和 BSR 工程的研究,这一领域是本综述的主要关注点。我们首先总结了对植物免疫系统认识的最新进展。然后,我们考察了在了解作物 BSR 的分子机制方面取得的进展。最后,我们重点介绍了为实现 BSR 而采用的各种策略,如通过基因堆叠组合多个 R 基因、对易感 (S) 基因和执行 R 基因的启动子进行多重基因组编辑、编辑顺式调控元件以微调基因表达、RNA 干扰、饱和突变和精确基因组插入。对 BSR 的遗传研究和工程设计可加速抗病栽培品种的培育和作物改良,从而保障全球粮食安全。
{"title":"Genetic engineering including genome editing for broad-spectrum disease resistance in crops.","authors":"Xinyu Han, Shumin Li, Qingdong Zeng, Peng Sun, Dousheng Wu, Jianguo Wu, Xiao Yu, Zhibing Lai, Ricky J Milne, Zhensheng Kang, Kabin Xie, Guotian Li","doi":"10.1016/j.xplc.2024.101195","DOIUrl":"https://doi.org/10.1016/j.xplc.2024.101195","url":null,"abstract":"<p><p>Plant diseases, caused by a wide range of pathogens, severely reduce crop yield, quality and pose a threat to global food security. Developing broad-spectrum resistance (BSR) in crops is a key strategy to control crop diseases and safeguard crop production. Cloning of disease-resistance (R) genes and understanding their underlying molecular mechanisms provides new genetic resources and strategies for crop breeding. Novel genetic engineering and genome editing tools have accelerated the study of BSR genes and engineering of BSR in crops, and this area represents the primary focus of this review. We first summarize recent advances in the understanding of the plant immune system. We then examine progress in understanding molecular mechanisms underlying BSR in crops. Finally, we highlight diverse strategies employed to achieve BSR, such as gene stacking to combine multiple R genes, multiplexed genome editing of susceptibility (S) genes and promoters of executor R genes, editing cis-regulatory elements for fine-tuning gene expression, RNA interference, saturation mutagenesis, and precise genomic insertions. Genetic studies and engineering of BSR accelerate breeding of disease-resistant cultivars and crop improvement, which will act to safeguard global food security.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101195"},"PeriodicalIF":9.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A natural variation of TaERF-A1 encoding an AP2/ERF transcription factor confers semidwarf plant architecture and increased lodging resistance in wheat. 编码 AP2/ERF 转录因子的 TaERF-A1 的自然变异赋予小麦半矮植株结构和更强的抗倒伏性。
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-19 DOI: 10.1016/j.xplc.2024.101194
Renhan Li, Jie Liu, Lingling Chai, Dejie Du, Wen Yang, Jun Zhu, Yaotian Gao, Yunjie Liu, Lingfeng Miao, Long Song, Xiaoming Xie, Yongming Chen, Zhaoheng Zhang, Pei Ni, Yidi Zhao, Zhaoju Li, Lahu Lu, Weilong Guo, Huiru Peng, Qixin Sun, Zhongfu Ni

The introduction of Reduced height (Rht) genes into wheat varieties results in semidwarf plant architecture with largely improved lodging resistance and harvest indices. Therefore, the exploration of new Rht gene resources to breed semidwarf wheat cultivars has been a major strategy for guaranteeing high and stable grain yields of wheat since the 1960s. In this study, we report the map-based cloning of TaERF-A1, which encodes an AP2/ERF transcription factor and acts as a positive regulator of wheat stem elongation, as a new gene for regulating plant height and spike length. The natural variant TaERF-A1JD6, characterized by a substitution from Phe (derived from Nongda3338) to Ser (derived from Jingdong6) at position 178, significantly weakened the stability of the TaERF-A1 protein. As a result, this substitution led to partly attenuated transcriptional activation of TaERF-A1-targeted downstream genes, including TaPIF4, resulting in the restriction of stem and spike elongation. Importantly, introgression of the semidwarfing-related allele TaERF-A1JD6 in wheat materials significantly enhanced lodging resistance, especially in dense cropping systems. Therefore, our study reveals TaERF-A1JD6 as a new Rht gene resource for breeding semidwarf wheat varieties with increased yield stability.

在小麦品种中引入降低高度(Rht)基因,可获得半矮植株结构,并在很大程度上提高抗倒伏性和收获指数。因此,自 20 世纪 60 年代以来,探索新的 Rht 基因资源以培育半矮小小麦栽培品种一直是保证小麦高产稳产的主要策略。本研究报告了基于图谱克隆的 TaERF-A1 基因,该基因编码 AP2/ERF 转录因子,是小麦茎伸长的正调控因子,是调控株高和穗长的新基因。天然变体 TaERF-A1JD6 的特点是在第 178 位将 Phe(来源于农大 3338)替换为 Ser(来源于京东 6),这大大削弱了 TaERF-A1 蛋白的稳定性。因此,这种替换导致 TaERF-A1 靶向下游基因(包括 TaPIF4)的转录激活部分减弱,从而限制了茎和穗的伸长。重要的是,在小麦材料中导入与半矮化相关的等位基因 TaERF-A1JD6 能显著提高抗倒伏性,尤其是在密植系统中。因此,我们的研究揭示了 TaERF-A1JD6 是一种新的 Rht 基因资源,可用于培育具有增产稳定性的半矮秆小麦品种。
{"title":"A natural variation of TaERF-A1 encoding an AP2/ERF transcription factor confers semidwarf plant architecture and increased lodging resistance in wheat.","authors":"Renhan Li, Jie Liu, Lingling Chai, Dejie Du, Wen Yang, Jun Zhu, Yaotian Gao, Yunjie Liu, Lingfeng Miao, Long Song, Xiaoming Xie, Yongming Chen, Zhaoheng Zhang, Pei Ni, Yidi Zhao, Zhaoju Li, Lahu Lu, Weilong Guo, Huiru Peng, Qixin Sun, Zhongfu Ni","doi":"10.1016/j.xplc.2024.101194","DOIUrl":"https://doi.org/10.1016/j.xplc.2024.101194","url":null,"abstract":"<p><p>The introduction of Reduced height (Rht) genes into wheat varieties results in semidwarf plant architecture with largely improved lodging resistance and harvest indices. Therefore, the exploration of new Rht gene resources to breed semidwarf wheat cultivars has been a major strategy for guaranteeing high and stable grain yields of wheat since the 1960s. In this study, we report the map-based cloning of TaERF-A1, which encodes an AP2/ERF transcription factor and acts as a positive regulator of wheat stem elongation, as a new gene for regulating plant height and spike length. The natural variant TaERF-A1<sup>JD6</sup>, characterized by a substitution from Phe (derived from Nongda3338) to Ser (derived from Jingdong6) at position 178, significantly weakened the stability of the TaERF-A1 protein. As a result, this substitution led to partly attenuated transcriptional activation of TaERF-A1-targeted downstream genes, including TaPIF4, resulting in the restriction of stem and spike elongation. Importantly, introgression of the semidwarfing-related allele TaERF-A1<sup>JD6</sup> in wheat materials significantly enhanced lodging resistance, especially in dense cropping systems. Therefore, our study reveals TaERF-A1<sup>JD6</sup> as a new Rht gene resource for breeding semidwarf wheat varieties with increased yield stability.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101194"},"PeriodicalIF":9.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creation of rapeseed germplasm with high polyunsaturated fatty acid content by relative introgression of Brassica carinata. 通过芸苔属植物的相对引种,培育出多不饱和脂肪酸含量高的油菜种质。
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-16 DOI: 10.1016/j.xplc.2024.101193
Yan Niu, Wenwen Li, Yinghui Yang, Hao Wang, Zhesi He, Han Qin, Yikai Zhang, Dandan Hu, Jing Wang, Chunyu Zhang, Guangsheng Yang, Ian Bancroft, Jun Zou
{"title":"Creation of rapeseed germplasm with high polyunsaturated fatty acid content by relative introgression of Brassica carinata.","authors":"Yan Niu, Wenwen Li, Yinghui Yang, Hao Wang, Zhesi He, Han Qin, Yikai Zhang, Dandan Hu, Jing Wang, Chunyu Zhang, Guangsheng Yang, Ian Bancroft, Jun Zou","doi":"10.1016/j.xplc.2024.101193","DOIUrl":"https://doi.org/10.1016/j.xplc.2024.101193","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101193"},"PeriodicalIF":9.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The E3 ligase OsHel2 impedes readthrough of stalled mRNAs to regulate male fertility in thermo-sensitive genic male sterile rice. E3连接酶OsHel2会阻碍停滞的mRNA的读通,从而调节热敏感基因雄性不育水稻的雄性生殖力。
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-12 DOI: 10.1016/j.xplc.2024.101192
Wei Liu, Ji Li, Jing Sun, Chunyan Liu, Bin Yan, Can Zhou, Shengdong Li, Xianwei Song, Wei Yan, Yuanzhu Yang, Xiaofeng Cao

Heterosis is extensively utilized in the two-line hybrid breeding system. Photo-/thermo-sensitive genic male sterile (P/TGMS) lines are key components of two-line hybrid rice. TGMS lines containing tms5 have significantly advanced two-line hybrid rice breeding. We cloned the TMS5 gene and found that TMS5 is a tRNA cyclic phosphatase that can remove 2',3'-cyclic phosphate (cP) from cP-ΔCCA-tRNAs for efficient repair to ensure maintenance of mature tRNA levels. tms5 mutation causes increased cP-ΔCCA-tRNAs and reduced mature tRNAs, leading to male sterility at the restrictive temperatures. However, the regulatory network of tms5-mediated TGMS remains to be elucidated. Here, we identified that an E3 ligase OsHel2 cooperates with TMS5 to regulate TGMS at the restrictive temperatures. Consistently, both the accumulation of 2',3'-cP-ΔCCA-tRNAs and insufficiency of mature tRNAs in tms5 mutant were largely recovered in the tms5 oshel2-1 mutant. A lesion in OsHel2 results in partial readthrough of the stalled sequences, thereby evading ribosome-associated protein quality control (RQC) surveillance. Our findings reveal a mechanism by which the OsHel2 impede readthrough of stalled mRNA sequences to regulate male fertility in TGMS rice, thus providing a paradigm for investigating how disorders in the components of the RQC pathway impair cellular functions and lead to diseases or defects in other organisms.

在两系杂交育种系统中,杂交被广泛利用。光敏/热敏基因雄性不育系(P/TGMS)是两系杂交水稻的关键组成部分。含有 tms5 的 TGMS 株系极大地推动了两系杂交水稻育种的发展。我们克隆了 TMS5 基因,发现 TMS5 是一种 tRNA 环磷酸酶,能从 cP-ΔCCA-tRNA 中去除 2',3'-环磷酸(cP),以进行有效修复,确保维持成熟 tRNA 的水平。tms5 基因突变会导致 cP-ΔCCA-tRNA 增加,成熟 tRNA 减少,从而导致限制性温度下的雄性不育。然而,tms5 介导的 TGMS 的调控网络仍有待阐明。在这里,我们发现一种E3连接酶OsHel2与TMS5合作调控限制性温度下的TGMS。一致的是,tms5突变体中2',3'-cP-ΔCCA-tRNAs的积累和成熟tRNAs的不足在tms5 oshel2-1突变体中得到了很大程度的恢复。OsHel2 的病变导致了部分停滞序列的读通,从而逃避了核糖体相关蛋白质量控制(RQC)的监控。我们的研究结果揭示了OsHel2阻碍停滞的mRNA序列的读通从而调节TGMS水稻雄性生殖力的机制,从而为研究RQC通路成分的紊乱如何损害细胞功能并导致其他生物体的疾病或缺陷提供了范例。
{"title":"The E3 ligase OsHel2 impedes readthrough of stalled mRNAs to regulate male fertility in thermo-sensitive genic male sterile rice.","authors":"Wei Liu, Ji Li, Jing Sun, Chunyan Liu, Bin Yan, Can Zhou, Shengdong Li, Xianwei Song, Wei Yan, Yuanzhu Yang, Xiaofeng Cao","doi":"10.1016/j.xplc.2024.101192","DOIUrl":"https://doi.org/10.1016/j.xplc.2024.101192","url":null,"abstract":"<p><p>Heterosis is extensively utilized in the two-line hybrid breeding system. Photo-/thermo-sensitive genic male sterile (P/TGMS) lines are key components of two-line hybrid rice. TGMS lines containing tms5 have significantly advanced two-line hybrid rice breeding. We cloned the TMS5 gene and found that TMS5 is a tRNA cyclic phosphatase that can remove 2',3'-cyclic phosphate (cP) from cP-ΔCCA-tRNAs for efficient repair to ensure maintenance of mature tRNA levels. tms5 mutation causes increased cP-ΔCCA-tRNAs and reduced mature tRNAs, leading to male sterility at the restrictive temperatures. However, the regulatory network of tms5-mediated TGMS remains to be elucidated. Here, we identified that an E3 ligase OsHel2 cooperates with TMS5 to regulate TGMS at the restrictive temperatures. Consistently, both the accumulation of 2',3'-cP-ΔCCA-tRNAs and insufficiency of mature tRNAs in tms5 mutant were largely recovered in the tms5 oshel2-1 mutant. A lesion in OsHel2 results in partial readthrough of the stalled sequences, thereby evading ribosome-associated protein quality control (RQC) surveillance. Our findings reveal a mechanism by which the OsHel2 impede readthrough of stalled mRNA sequences to regulate male fertility in TGMS rice, thus providing a paradigm for investigating how disorders in the components of the RQC pathway impair cellular functions and lead to diseases or defects in other organisms.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101192"},"PeriodicalIF":9.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and spectroscopic insights into fucoxanthin chlorophyll a/c-binding proteins of diatoms in diverse oligomeric states. 硅藻中不同寡聚状态的叶绿素 a/c 结合蛋白的结构和光谱学研究。
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-11 Epub Date: 2024-07-18 DOI: 10.1016/j.xplc.2024.101041
Cuicui Zhou, Yue Feng, Zhenhua Li, Lili Shen, Xiaoyi Li, Yumei Wang, Guangye Han, Tingyun Kuang, Cheng Liu, Jian-Ren Shen, Wenda Wang

Diatoms, a group of prevalent marine algae, contribute significantly to global primary productivity. Their substantial biomass is linked to enhanced absorption of blue-green light underwater, facilitated by fucoxanthin chlorophyll (Chl) a/c-binding proteins (FCPs), which exhibit oligomeric diversity across diatom species. Using mild clear native PAGE analysis of solubilized thylakoid membranes, we displayed monomeric, dimeric, trimeric, tetrameric, and pentameric FCPs in diatoms. Mass spectrometry analysis revealed that each oligomeric FCP has a specific protein composition, and together they constitute a large Lhcf family of FCP antennas. In addition, we resolved the structures of the Thalassiosira pseudonana FCP (Tp-FCP) homotrimer and the Chaetoceros gracilis FCP (Cg-FCP) pentamer by cryoelectron microscopy at 2.73-Å and 2.65-Å resolution, respectively. The distinct pigment compositions and organizations of various oligomeric FCPs affect their blue-green light-harvesting, excitation energy transfer pathways. Compared with dimeric and trimeric FCPs, the Cg-FCP tetramer and Cg-FCP pentamer exhibit stronger absorption by Chl c, redshifted and broader Chl a fluorescence emission, and more robust circular dichroism signals originating from Chl a-carotenoid dimers. These spectroscopic characteristics indicate that Chl a molecules in the Cg-FCP tetramer and Cg-FCP pentamer are more heterogeneous than in both dimers and the Tp-FCP trimer. The structural and spectroscopic insights provided by this study contribute to a better understanding of the mechanisms that empower diatoms to adapt to fluctuating light environments.

硅藻是一类普遍存在的海洋藻类,对全球初级生产力做出了重大贡献。硅藻的大量生物量与它们对水下蓝绿光的吸收能力增强有关,而叶绿素 a/c 结合蛋白(FCPs)则促进了对蓝绿光的吸收。通过对溶解的类叶绿体膜进行温和的 CN-PAGE 分析,我们在硅藻中发现了单体、二聚体、三聚体、四聚体和五聚体 FCPs。质谱分析表明,每种寡聚 FCP 都有特定的蛋白质组成,构成了一个庞大的 FCP 天线 Lhcf 家族。此外,我们还通过冷冻电镜分别以2.73埃和2.65埃的分辨率解析了Thalassiosira pseudonana FCP(Tp-FCP)同源三聚体和Chaetoceros gracilis FCP(Cg-FCP)五聚体的结构。各种低聚物 FCP 中不同的色素组成和组织改变了它们的蓝绿光收集和激发能量转移途径。与二聚体和三聚体 FCP 相比,Cg-FCP 四聚体和 Cg-FCP 五聚体表现出更强的 Chls c 吸收、红移和更宽的 Chl a 荧光发射,以及源自 Chl a 类胡萝卜素二聚体的更强的圆二色性信号。这些光谱特征表明,与二聚体和 Tp-FCP 三聚体相比,Cg-FCP 四聚体和 Cg-FCP 五聚体中的 Chl a 分子更具异质性。本研究提供的结构和光谱学见解有助于更好地理解硅藻适应波动光环境的机制。
{"title":"Structural and spectroscopic insights into fucoxanthin chlorophyll a/c-binding proteins of diatoms in diverse oligomeric states.","authors":"Cuicui Zhou, Yue Feng, Zhenhua Li, Lili Shen, Xiaoyi Li, Yumei Wang, Guangye Han, Tingyun Kuang, Cheng Liu, Jian-Ren Shen, Wenda Wang","doi":"10.1016/j.xplc.2024.101041","DOIUrl":"10.1016/j.xplc.2024.101041","url":null,"abstract":"<p><p>Diatoms, a group of prevalent marine algae, contribute significantly to global primary productivity. Their substantial biomass is linked to enhanced absorption of blue-green light underwater, facilitated by fucoxanthin chlorophyll (Chl) a/c-binding proteins (FCPs), which exhibit oligomeric diversity across diatom species. Using mild clear native PAGE analysis of solubilized thylakoid membranes, we displayed monomeric, dimeric, trimeric, tetrameric, and pentameric FCPs in diatoms. Mass spectrometry analysis revealed that each oligomeric FCP has a specific protein composition, and together they constitute a large Lhcf family of FCP antennas. In addition, we resolved the structures of the Thalassiosira pseudonana FCP (Tp-FCP) homotrimer and the Chaetoceros gracilis FCP (Cg-FCP) pentamer by cryoelectron microscopy at 2.73-Å and 2.65-Å resolution, respectively. The distinct pigment compositions and organizations of various oligomeric FCPs affect their blue-green light-harvesting, excitation energy transfer pathways. Compared with dimeric and trimeric FCPs, the Cg-FCP tetramer and Cg-FCP pentamer exhibit stronger absorption by Chl c, redshifted and broader Chl a fluorescence emission, and more robust circular dichroism signals originating from Chl a-carotenoid dimers. These spectroscopic characteristics indicate that Chl a molecules in the Cg-FCP tetramer and Cg-FCP pentamer are more heterogeneous than in both dimers and the Tp-FCP trimer. The structural and spectroscopic insights provided by this study contribute to a better understanding of the mechanisms that empower diatoms to adapt to fluctuating light environments.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101041"},"PeriodicalIF":9.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytokinins regulate spatially specific ethylene production to control root growth in Arabidopsis. 细胞分裂素调节空间特异性乙烯的产生,从而控制拟南芥根的生长。
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-11 Epub Date: 2024-07-03 DOI: 10.1016/j.xplc.2024.101013
Amel Yamoune, Marketa Zdarska, Thomas Depaepe, Anna Rudolfova, Jan Skalak, Kenneth Wayne Berendzen, Virtudes Mira-Rodado, Michael Fitz, Blanka Pekarova, Katrina Leslie Nicolas Mala, Paul Tarr, Eliska Spackova, Lucia Tomovicova, Barbora Parizkova, Abigail Franczyk, Ingrid Kovacova, Vladislav Dolgikh, Elena Zemlyanskaya, Marketa Pernisova, Ondrej Novak, Elliot Meyerowitz, Klaus Harter, Dominique Van Der Straeten, Jan Hejatko

Two principal growth regulators, cytokinins and ethylene, are known to interact in the regulation of plant growth. However, information about the underlying molecular mechanism and positional specificity of cytokinin/ethylene crosstalk in the control of root growth is scarce. We have identified the spatial specificity of cytokinin-regulated root elongation and root apical meristem (RAM) size, both of which we demonstrate to be dependent on ethylene biosynthesis. Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE (IPT) in proximal and peripheral tissues leads to both root and RAM shortening. By contrast, IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to that of mock-treated controls. We show that cytokinins regulate two steps specific to ethylene biosynthesis: production of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) by ACC SYNTHASEs (ACSs) and its conversion to ethylene by ACC OXIDASEs (ACOs). We describe cytokinin- and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes. Using direct ethylene measurements, we identify ACO2, ACO3, and ACO4 as being responsible for ethylene biosynthesis and ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis. Direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), a member of the multistep phosphorelay cascade, and the C-terminal portion of ETHYLENE INSENSITIVE 2 (EIN2-C), a key regulator of canonical ethylene signaling, is involved in the cytokinin-induced, ethylene-mediated control of ACO4. We propose tight cooperation between cytokinin and ethylene signaling in the spatially specific regulation of ethylene biosynthesis as a key aspect of the hormonal control of root growth.

众所周知,细胞分裂素和乙烯这两种主要生长调节剂在植物生长调控过程中相互作用。然而,有关细胞分裂素/乙烯在根系生长调控中相互影响的分子机制和位置特异性的信息却很少。我们发现了细胞分裂素调控根伸长和根顶端分生组织(RAM)大小的空间特异性,并证明这两者都依赖于乙烯的生物合成。细胞分裂素生物合成基因 ISOPENTENYLTRANSFERASE(IPT)在近端和外围组织中的上调会导致根和 RAM 缩短。相反,激活远端和内部组织中的 IPT 会减少 RAM 的大小,同时使根的长度与模拟处理的对照组相当。我们的研究表明,细胞分裂素调节乙烯生物合成的两个特定步骤,即乙烯前体 1-氨基环丙烷-1-羧酸酯(ACC)由 ACC 合成酶(ACS)产生,以及乙烯前体 1-氨基环丙烷-1-羧酸酯(ACC)由 ACC 氧化酶(ACO)转化为乙烯。我们描述了细胞分裂素和乙烯的特异性调控,这些调控控制着沿近根轴/远根轴和径向根轴空间离散的 ACS 和 ACO 的活性。通过直接乙烯测量,我们确定 ACO2、ACO3 和 ACO4 在细胞分裂素处理的拟南芥中负责乙烯生物合成以及乙烯调控的根和 RAM 缩短。拟南芥反应调节因子 2(ARR2)是多步骤磷酸还原级联的成员之一,它与乙烯无敏感性 2(EIN2-C)的 C 端部分(EIN2-C 是典型乙烯信号转导的关键调节因子)之间的直接相互作用参与了细胞分裂素诱导的乙烯介导的 ACO4 控制。我们认为细胞分裂素和乙烯信号在乙烯生物合成的空间特异性调控中的紧密合作是激素控制根系生长的一个关键方面。
{"title":"Cytokinins regulate spatially specific ethylene production to control root growth in Arabidopsis.","authors":"Amel Yamoune, Marketa Zdarska, Thomas Depaepe, Anna Rudolfova, Jan Skalak, Kenneth Wayne Berendzen, Virtudes Mira-Rodado, Michael Fitz, Blanka Pekarova, Katrina Leslie Nicolas Mala, Paul Tarr, Eliska Spackova, Lucia Tomovicova, Barbora Parizkova, Abigail Franczyk, Ingrid Kovacova, Vladislav Dolgikh, Elena Zemlyanskaya, Marketa Pernisova, Ondrej Novak, Elliot Meyerowitz, Klaus Harter, Dominique Van Der Straeten, Jan Hejatko","doi":"10.1016/j.xplc.2024.101013","DOIUrl":"10.1016/j.xplc.2024.101013","url":null,"abstract":"<p><p>Two principal growth regulators, cytokinins and ethylene, are known to interact in the regulation of plant growth. However, information about the underlying molecular mechanism and positional specificity of cytokinin/ethylene crosstalk in the control of root growth is scarce. We have identified the spatial specificity of cytokinin-regulated root elongation and root apical meristem (RAM) size, both of which we demonstrate to be dependent on ethylene biosynthesis. Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE (IPT) in proximal and peripheral tissues leads to both root and RAM shortening. By contrast, IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to that of mock-treated controls. We show that cytokinins regulate two steps specific to ethylene biosynthesis: production of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) by ACC SYNTHASEs (ACSs) and its conversion to ethylene by ACC OXIDASEs (ACOs). We describe cytokinin- and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes. Using direct ethylene measurements, we identify ACO2, ACO3, and ACO4 as being responsible for ethylene biosynthesis and ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis. Direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), a member of the multistep phosphorelay cascade, and the C-terminal portion of ETHYLENE INSENSITIVE 2 (EIN2-C), a key regulator of canonical ethylene signaling, is involved in the cytokinin-induced, ethylene-mediated control of ACO4. We propose tight cooperation between cytokinin and ethylene signaling in the spatially specific regulation of ethylene biosynthesis as a key aspect of the hormonal control of root growth.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101013"},"PeriodicalIF":9.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green production of apples delivers environmental and economic benefits in China. 中国的绿色苹果生产带来了环境和经济效益。
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-11 Epub Date: 2024-06-22 DOI: 10.1016/j.xplc.2024.101006
Di Liu, Jiuliang Xu, Xuexian Li, Fusuo Zhang

Sustainable alternative farming systems are gaining popularity worldwide because of the negative effects of conventional agriculture on global climate change and the environmental degradation caused by intensive use of synthetic inputs. The green farming system in China is an integrated production strategy that focuses on reducing chemical fertilizer use while increasing organic manure inputs. Despite their rapid growth as more sustainable systems over the past decades, green farming systems have not been systematically evaluated to date. We used apple production as a representative case to assess the sustainability of green farming systems. Across major apple-producing regions in China, green farming reduced the application of chemical fertilizer nitrogen (N) by 46.8% (from 412 to 219 kg ha-1) and increased that of manure N by 33.1% (from 171 to 227 kg ha-1) on average compared with conventional systems enhancing N use efficiency by 7.27-20.27% and reducing N losses by 8.92%-11.56%. It also slightly lowered yield by 4.34%-13.8% in four provinces. Soil fertility was improved in green orchards through increases in soil organic matter, total N, and available major nutrients. Our cradle-to-farm-gate life-cycle assessment revealed that green farming helped to mitigate greenhouse gas emissions by an average of 12.6%, potentially contributing to a reduction of 165 239 t CO2 eq annually in major apple-producing areas. In addition, green farming achieved 39.3% higher profitability ($7180 ha-1 year-1) at the farmer level. Our study demonstrates the potential of green production of apples for the development of sustainable agriculture in China. These findings advance our understanding of sustainable alternative farming systems and offer perspectives for the sustainable development of global agriculture.

由于传统农业依赖大量使用合成投入品,对全球气候变化和环境退化造成了负面影响,因此可持续的替代耕作制度在全球越来越受欢迎。在中国,绿色农业系统是一种综合生产战略,尤其注重化肥减量与有机肥投入相结合。尽管作为一种更可持续的耕作制度,绿色耕作制度在过去几十年中发展迅速,但迄今为止尚未对其进行过系统评估。我们以苹果生产为代表,评估绿色农业系统的可持续性。在中国的主要苹果产区,绿色种植比传统种植平均减少化肥氮46.8%(从412千克/公顷减少到219千克/公顷),增加粪肥氮33.1%(从171千克/公顷增加到227千克/公顷),使氮的利用效率提高了7.27%到20.27%,氮的损失减少了8.92%到11.56%,但也导致四个省份的产量略低4.34%到13.8%。通过增加土壤有机质、全氮和可利用的主要养分,绿色果园的土壤肥力得到改善。我们的 "从摇篮到农场 "生命周期评估显示,绿色农业平均减少了 12.6% 的温室气体排放,每年可为苹果主产区减少 165239 吨二氧化碳当量。此外,在农民层面,绿色种植的利润率提高了 39.3%(7180 美元/公顷-1 年-1)。我们的研究证明了绿色苹果生产在中国农业绿色发展中的潜力。这些研究结果为进一步了解可持续替代农业系统和全球农业可持续发展提供了见解。
{"title":"Green production of apples delivers environmental and economic benefits in China.","authors":"Di Liu, Jiuliang Xu, Xuexian Li, Fusuo Zhang","doi":"10.1016/j.xplc.2024.101006","DOIUrl":"10.1016/j.xplc.2024.101006","url":null,"abstract":"<p><p>Sustainable alternative farming systems are gaining popularity worldwide because of the negative effects of conventional agriculture on global climate change and the environmental degradation caused by intensive use of synthetic inputs. The green farming system in China is an integrated production strategy that focuses on reducing chemical fertilizer use while increasing organic manure inputs. Despite their rapid growth as more sustainable systems over the past decades, green farming systems have not been systematically evaluated to date. We used apple production as a representative case to assess the sustainability of green farming systems. Across major apple-producing regions in China, green farming reduced the application of chemical fertilizer nitrogen (N) by 46.8% (from 412 to 219 kg ha<sup>-1</sup>) and increased that of manure N by 33.1% (from 171 to 227 kg ha<sup>-1</sup>) on average compared with conventional systems enhancing N use efficiency by 7.27-20.27% and reducing N losses by 8.92%-11.56%. It also slightly lowered yield by 4.34%-13.8% in four provinces. Soil fertility was improved in green orchards through increases in soil organic matter, total N, and available major nutrients. Our cradle-to-farm-gate life-cycle assessment revealed that green farming helped to mitigate greenhouse gas emissions by an average of 12.6%, potentially contributing to a reduction of 165 239 t CO<sub>2</sub> eq annually in major apple-producing areas. In addition, green farming achieved 39.3% higher profitability ($7180 ha<sup>-1</sup> year<sup>-1</sup>) at the farmer level. Our study demonstrates the potential of green production of apples for the development of sustainable agriculture in China. These findings advance our understanding of sustainable alternative farming systems and offer perspectives for the sustainable development of global agriculture.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101006"},"PeriodicalIF":9.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct RNA sequencing in plants: Practical applications and future perspectives. 植物中的直接 RNA 测序:实际应用与未来展望。
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-11 Epub Date: 2024-08-18 DOI: 10.1016/j.xplc.2024.101064
Xi-Tong Zhu, Pablo Sanz-Jimenez, Xiao-Tong Ning, Muhammad Tahir Ul Qamar, Ling-Ling Chen

The transcriptome serves as a bridge that links genomic variation to phenotypic diversity. A vast number of studies using next-generation RNA sequencing (RNA-seq) over the last 2 decades have emphasized the essential roles of the plant transcriptome in response to developmental and environmental conditions, providing numerous insights into the dynamic changes, evolutionary traces, and elaborate regulation of the plant transcriptome. With substantial improvement in accuracy and throughput, direct RNA sequencing (DRS) has emerged as a new and powerful sequencing platform for precise detection of native and full-length transcripts, overcoming many limitations such as read length and PCR bias that are inherent to short-read RNA-seq. Here, we review recent advances in dissecting the complexity and diversity of plant transcriptomes using DRS as the main technological approach, covering many aspects of RNA metabolism, including novel isoforms, poly(A) tails, and RNA modification, and we propose a comprehensive workflow for processing of plant DRS data. Many challenges to the application of DRS in plants, such as the need for machine learning tools tailored to plant transcriptomes, remain to be overcome, and together we outline future biological questions that can be addressed by DRS, such as allele-specific RNA modification. This technology provides convenient support on which the connection of distinct RNA features is tightly built, sustainably refining our understanding of the biological functions of the plant transcriptome.

转录组是连接基因组变异和表型多样性的桥梁。近二十年来,大量使用新一代 RNA 测序(RNA-seq)的研究强调了植物转录组在响应发育和环境条件中的重要作用,从而对植物转录组的动态变化、进化轨迹和精细调控有了更多的了解。随着精确度和通量的大幅提高,直接 RNA 测序(DRS)已成为精确检测原生和全长转录本的一种新的强大测序平台,它克服了短读程 RNA-seq 固有的读长和 PCR 偏差等诸多限制。在此,我们从 RNA 代谢的多个方面,包括新型同工酶、poly(A) 尾和 RNA 修饰等,回顾了以 DRS 为主要技术手段剖析植物转录组复杂性和多样性的最新进展,并提出了一套完整的植物 DRS 数据处理工作流程。关于 DRS 在植物中的应用,还有许多挑战有待解决,如针对植物转录组的机器学习工具,我们一起展望了 DRS 有可能回答的未来生物学问题,如等位基因特异性 RNA 修饰。这项技术提供了便捷的支持,可在此基础上紧密建立不同 RNA 特征之间的联系,从而不断完善我们对植物转录组生物学功能的理解。
{"title":"Direct RNA sequencing in plants: Practical applications and future perspectives.","authors":"Xi-Tong Zhu, Pablo Sanz-Jimenez, Xiao-Tong Ning, Muhammad Tahir Ul Qamar, Ling-Ling Chen","doi":"10.1016/j.xplc.2024.101064","DOIUrl":"10.1016/j.xplc.2024.101064","url":null,"abstract":"<p><p>The transcriptome serves as a bridge that links genomic variation to phenotypic diversity. A vast number of studies using next-generation RNA sequencing (RNA-seq) over the last 2 decades have emphasized the essential roles of the plant transcriptome in response to developmental and environmental conditions, providing numerous insights into the dynamic changes, evolutionary traces, and elaborate regulation of the plant transcriptome. With substantial improvement in accuracy and throughput, direct RNA sequencing (DRS) has emerged as a new and powerful sequencing platform for precise detection of native and full-length transcripts, overcoming many limitations such as read length and PCR bias that are inherent to short-read RNA-seq. Here, we review recent advances in dissecting the complexity and diversity of plant transcriptomes using DRS as the main technological approach, covering many aspects of RNA metabolism, including novel isoforms, poly(A) tails, and RNA modification, and we propose a comprehensive workflow for processing of plant DRS data. Many challenges to the application of DRS in plants, such as the need for machine learning tools tailored to plant transcriptomes, remain to be overcome, and together we outline future biological questions that can be addressed by DRS, such as allele-specific RNA modification. This technology provides convenient support on which the connection of distinct RNA features is tightly built, sustainably refining our understanding of the biological functions of the plant transcriptome.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101064"},"PeriodicalIF":9.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An integrated pipeline facilitates fast cloning of a new powdery mildew resistance gene from the wheat wild relative Aegilops umbellulata. 集成管道有助于快速克隆小麦野生近缘种 Aegilops umbellulata 的抗白粉病新基因。
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-11 Epub Date: 2024-08-22 DOI: 10.1016/j.xplc.2024.101070
Huagang He, Jiale Wang, Jiabao Liang, Qianyuan Zhang, Minfeng Xue, Zhaozhao Chen, Qiulian Tang, Xiaobei Chen, Shanying Zhu, Yajun Wang
{"title":"An integrated pipeline facilitates fast cloning of a new powdery mildew resistance gene from the wheat wild relative Aegilops umbellulata.","authors":"Huagang He, Jiale Wang, Jiabao Liang, Qianyuan Zhang, Minfeng Xue, Zhaozhao Chen, Qiulian Tang, Xiaobei Chen, Shanying Zhu, Yajun Wang","doi":"10.1016/j.xplc.2024.101070","DOIUrl":"10.1016/j.xplc.2024.101070","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101070"},"PeriodicalIF":9.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IsDge10 is a hypercompact TnpB nuclease that confers efficient genome editing in rice. IsDge10 是一种超小型 TnpB 核酸酶,它能在水稻中实现高效的基因组编辑。
IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-11 Epub Date: 2024-08-21 DOI: 10.1016/j.xplc.2024.101068
Rui Zhang, Xu Tang, Yao He, Yangcun Li, Wei Wang, Yawei Wang, Danning Wang, Xuelian Zheng, Yiping Qi, Yong Zhang
{"title":"IsDge10 is a hypercompact TnpB nuclease that confers efficient genome editing in rice.","authors":"Rui Zhang, Xu Tang, Yao He, Yangcun Li, Wei Wang, Yawei Wang, Danning Wang, Xuelian Zheng, Yiping Qi, Yong Zhang","doi":"10.1016/j.xplc.2024.101068","DOIUrl":"10.1016/j.xplc.2024.101068","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101068"},"PeriodicalIF":9.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1