Pub Date : 2025-03-28DOI: 10.1016/j.xplc.2025.101324
Yang Shen, Xiaoxi Cai, Wanhong Li, Hao Wu, Bowei Jia, Mingzhe Sun, Xiaoli Sun
Cold stress in temperate rice production regions is responsible for yield losses of up to 30-40%, and improving cold tolerance is a practical strategy to safeguard rice production. Numerous genes and signaling networks for cold stress have been identified in rice. However, little is known about the roles of microRNAs in the cold stress response. Here, we find that a rice-specific pri-miR1850 and its two mature products, miR1850.1 and miR1850.2, are down-regulated by cold stress. Using gain- and loss-of-function genetic approaches in elite japonica cultivars, we show that pri-miR1850 and miR1850.1 negatively regulate cold tolerance at both the young-seedling and booting stages. miR1850.1 targets and suppresses the immune gene NPR3 by mediating transcript cleavage and transitional repression. Upon cold treatment, NPR3 transcripts and proteins are up-regulated due to the alleviation of miR1850.1-mediated repression and the activation of NPR3 transcription. miR1850.1 functions genetically through NPR3 in the cold-stress response. The miR1850.1-NPR3 module also controls rice disease resistance and grain yields. Our findings reveal a cold-signaling network and provide targets for engineering cold-tolerant japonica varieties to endure fluctuating future climates.
{"title":"Rice-specific miR1850.1 targets NPR3 to regulate cold stress response.","authors":"Yang Shen, Xiaoxi Cai, Wanhong Li, Hao Wu, Bowei Jia, Mingzhe Sun, Xiaoli Sun","doi":"10.1016/j.xplc.2025.101324","DOIUrl":"https://doi.org/10.1016/j.xplc.2025.101324","url":null,"abstract":"<p><p>Cold stress in temperate rice production regions is responsible for yield losses of up to 30-40%, and improving cold tolerance is a practical strategy to safeguard rice production. Numerous genes and signaling networks for cold stress have been identified in rice. However, little is known about the roles of microRNAs in the cold stress response. Here, we find that a rice-specific pri-miR1850 and its two mature products, miR1850.1 and miR1850.2, are down-regulated by cold stress. Using gain- and loss-of-function genetic approaches in elite japonica cultivars, we show that pri-miR1850 and miR1850.1 negatively regulate cold tolerance at both the young-seedling and booting stages. miR1850.1 targets and suppresses the immune gene NPR3 by mediating transcript cleavage and transitional repression. Upon cold treatment, NPR3 transcripts and proteins are up-regulated due to the alleviation of miR1850.1-mediated repression and the activation of NPR3 transcription. miR1850.1 functions genetically through NPR3 in the cold-stress response. The miR1850.1-NPR3 module also controls rice disease resistance and grain yields. Our findings reveal a cold-signaling network and provide targets for engineering cold-tolerant japonica varieties to endure fluctuating future climates.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101324"},"PeriodicalIF":9.4,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-27DOI: 10.1016/j.xplc.2025.101323
JiaoJiao Zhu, Naveed Ahmad, Xuan Zhou, Wanyin He, Jianhua Wang, Changheng Shan, Zelong Chen, Wenjuan Ji, Zhenhua Liu
Carrots possess a diverse of falcarin-type polyacetylenes (PAs), which emerge as not only important phytoalexins against pathogens but also potential anti-cancer agents. Despite abundantly found in carrot root tissues, the biosynthesis and evolutionary origins of falcarindiol, a C17-PA, remain unknown. Fatty acid desaturase 2 (FAD2) enzymes play crucial roles in diversifying PAs by introducing various double and/or triple carbon-carbon bonds on fatty acid chains. Here, we apply association analysis and identify candidate FAD2 genes involved in falcarindiol biosynthesis. Using a rapid tobacco transient expression system, we found that DcFAD2 enzymes are highly functionally redundant and promiscuous. Combinatorial assays further uncovered unexpected synergistic and re-directive effects among FAD2 enzymes, complicating the biosynthetic pathway. CRISPR-Cas9-mediated mutagenesis and overexpression studies identified overlooked DcFAD2 hub genes as essential for falcarindiol production. Evolutionary analysis suggests that the expansion of DcFAD2 genes underpins the richness of falcarindiol in carrots, independently of the biosynthetic gene cluster previously identified in tomato. This work underscores the complexity of falcarin biosynthetic network and identifies hub genes essential for falcarindiol biosynthesis in carrot.
{"title":"Divergent fatty acid desaturase 2 is essential for falcarindiol biosynthesis in carrot.","authors":"JiaoJiao Zhu, Naveed Ahmad, Xuan Zhou, Wanyin He, Jianhua Wang, Changheng Shan, Zelong Chen, Wenjuan Ji, Zhenhua Liu","doi":"10.1016/j.xplc.2025.101323","DOIUrl":"https://doi.org/10.1016/j.xplc.2025.101323","url":null,"abstract":"<p><p>Carrots possess a diverse of falcarin-type polyacetylenes (PAs), which emerge as not only important phytoalexins against pathogens but also potential anti-cancer agents. Despite abundantly found in carrot root tissues, the biosynthesis and evolutionary origins of falcarindiol, a C17-PA, remain unknown. Fatty acid desaturase 2 (FAD2) enzymes play crucial roles in diversifying PAs by introducing various double and/or triple carbon-carbon bonds on fatty acid chains. Here, we apply association analysis and identify candidate FAD2 genes involved in falcarindiol biosynthesis. Using a rapid tobacco transient expression system, we found that DcFAD2 enzymes are highly functionally redundant and promiscuous. Combinatorial assays further uncovered unexpected synergistic and re-directive effects among FAD2 enzymes, complicating the biosynthetic pathway. CRISPR-Cas9-mediated mutagenesis and overexpression studies identified overlooked DcFAD2 hub genes as essential for falcarindiol production. Evolutionary analysis suggests that the expansion of DcFAD2 genes underpins the richness of falcarindiol in carrots, independently of the biosynthetic gene cluster previously identified in tomato. This work underscores the complexity of falcarin biosynthetic network and identifies hub genes essential for falcarindiol biosynthesis in carrot.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101323"},"PeriodicalIF":9.4,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The combination of flexible electronics and plant science has generated various plant-wearable sensors, yet challenges persist in their applications in real-world agriculture, particularly in high-throughput settings. Overcoming the trade-off between sensing sensitivity and range, adapting them to a wide range of crop types, and bridging the gap between sensor measurements and biological understandings remain the primary obstacles. Here we introduce PlantRing, an innovative, nano-flexible sensing system designed to address the aforementioned challenges. PlantRing employs bio-sourced carbonized silk georgette as the strain sensing material, offering exceptional detection limit (0.03-0.17% strain depending on sensor model), stretchability (tensile strain up to 100 %), and remarkable durability (season long). PlantRing effectively monitors plant growth and water status, by measuring organ circumference dynamics, performing reliably under harsh conditions and being adaptable to a wide range of plants. Applying PlantRing to study fruit cracking in tomato and watermelon reveals novel hydraulic mechanism, characterized by genotype-specific excess sap flow within the plant to fruiting branches. Its high-throughput application enabled large-scale quantification of stomatal sensitivity to soil drought, a long-standing aspiration in plant biology, facilitating drought tolerant germplasm selection. Combing PlantRing with soybean mutant led to the discovery of a potential novel function of the GmLNK2 circadian clock gene in stomatal regulation. More practically, integrating PlantRing into feedback irrigation achieves simultaneous water conservation and quality improvement, signifying a paradigm shift from experience- or environment-based to plant-based feedback control. Collectively, PlantRing represents a groundbreaking tool ready to revolutionize botanical studies, agriculture, and forestry.
{"title":"PlantRing: A high-throughput wearable sensor system for decoding plant growth, water relations and innovating irrigation.","authors":"Ting Sun, Chenze Lu, Zheng Shi, Mei Zou, Peng Bi, Xiaodong Xu, Qiguang Xie, Rujia Jiang, Yunxiu Liu, Rui Cheng, Wenzhao Xu, Huasen Wang, Yingying Zhang, Pei Xu","doi":"10.1016/j.xplc.2025.101322","DOIUrl":"https://doi.org/10.1016/j.xplc.2025.101322","url":null,"abstract":"<p><p>The combination of flexible electronics and plant science has generated various plant-wearable sensors, yet challenges persist in their applications in real-world agriculture, particularly in high-throughput settings. Overcoming the trade-off between sensing sensitivity and range, adapting them to a wide range of crop types, and bridging the gap between sensor measurements and biological understandings remain the primary obstacles. Here we introduce PlantRing, an innovative, nano-flexible sensing system designed to address the aforementioned challenges. PlantRing employs bio-sourced carbonized silk georgette as the strain sensing material, offering exceptional detection limit (0.03-0.17% strain depending on sensor model), stretchability (tensile strain up to 100 %), and remarkable durability (season long). PlantRing effectively monitors plant growth and water status, by measuring organ circumference dynamics, performing reliably under harsh conditions and being adaptable to a wide range of plants. Applying PlantRing to study fruit cracking in tomato and watermelon reveals novel hydraulic mechanism, characterized by genotype-specific excess sap flow within the plant to fruiting branches. Its high-throughput application enabled large-scale quantification of stomatal sensitivity to soil drought, a long-standing aspiration in plant biology, facilitating drought tolerant germplasm selection. Combing PlantRing with soybean mutant led to the discovery of a potential novel function of the GmLNK2 circadian clock gene in stomatal regulation. More practically, integrating PlantRing into feedback irrigation achieves simultaneous water conservation and quality improvement, signifying a paradigm shift from experience- or environment-based to plant-based feedback control. Collectively, PlantRing represents a groundbreaking tool ready to revolutionize botanical studies, agriculture, and forestry.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101322"},"PeriodicalIF":9.4,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143722016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-25DOI: 10.1016/j.xplc.2025.101321
Sayantan Panda, Louise Chappell-Maor, Luis Alejandro de Haro, Adam Jozwiak, Sachin A Gharat, Yana Kazachkova, Jianghua Cai, Andrii Vainer, Laura Toppino, Urmila Sehrawat, Guy Wizler, Margarita Pliner, Sagit Meir, Giuseppe Leonardo Rotino, Hagai Yasuor, Ilana Rogachev, Asaph Aharoni
Fruit pigmentation is a major signal that attracts frugivores to enable seed dispersal. In most fleshy fruit, green chlorophyll typically accumulates early in development and is replaced in ripening by a range of pigments. Species such as grape and strawberry replace chlorophyll by red anthocyanins generated through the flavonoid biosynthetic pathway. Eggplant (Solanum melongena) is unique as its fruit accumulates anthocyanins starting from fruit set which are later replaced by the yellow flavonoid pathway intermediate naringenin chalcone. To decipher the genetic regulation of such an extraordinary pigmentation shift, we integrated mRNA and microRNA profiling data obtained from developing eggplant fruit. We discovered that while SQUAMOSA PROMOTER BINDING-LIKE (i.e., SPL6a, SPL10, and SPL15), MYB1 and MYB2 transcription factors (TFs) regulate anthocyanin biosynthesis in early fruit development, the MYB12 TF controls late naringenin chalcone accumulation. We further show that microRNA157 and microRNA858 negatively regulate SPLs and MYB12 expression, respectively. Taken together, our model suggests that opposing and complementary expression of microRNAs and TFs controls the pigmentation switch in eggplant fruit skin. Intriguingly, despite the distinctive pigmentation pattern in eggplant, fruit development in other species utilize homologous regulatory factors to control the temporal and spatial production of different pigment classes.
{"title":"Molecular Mechanisms Driving the Unusual Pigmentation Shift in Eggplant Fruit Development.","authors":"Sayantan Panda, Louise Chappell-Maor, Luis Alejandro de Haro, Adam Jozwiak, Sachin A Gharat, Yana Kazachkova, Jianghua Cai, Andrii Vainer, Laura Toppino, Urmila Sehrawat, Guy Wizler, Margarita Pliner, Sagit Meir, Giuseppe Leonardo Rotino, Hagai Yasuor, Ilana Rogachev, Asaph Aharoni","doi":"10.1016/j.xplc.2025.101321","DOIUrl":"https://doi.org/10.1016/j.xplc.2025.101321","url":null,"abstract":"<p><p>Fruit pigmentation is a major signal that attracts frugivores to enable seed dispersal. In most fleshy fruit, green chlorophyll typically accumulates early in development and is replaced in ripening by a range of pigments. Species such as grape and strawberry replace chlorophyll by red anthocyanins generated through the flavonoid biosynthetic pathway. Eggplant (Solanum melongena) is unique as its fruit accumulates anthocyanins starting from fruit set which are later replaced by the yellow flavonoid pathway intermediate naringenin chalcone. To decipher the genetic regulation of such an extraordinary pigmentation shift, we integrated mRNA and microRNA profiling data obtained from developing eggplant fruit. We discovered that while SQUAMOSA PROMOTER BINDING-LIKE (i.e., SPL6a, SPL10, and SPL15), MYB1 and MYB2 transcription factors (TFs) regulate anthocyanin biosynthesis in early fruit development, the MYB12 TF controls late naringenin chalcone accumulation. We further show that microRNA157 and microRNA858 negatively regulate SPLs and MYB12 expression, respectively. Taken together, our model suggests that opposing and complementary expression of microRNAs and TFs controls the pigmentation switch in eggplant fruit skin. Intriguingly, despite the distinctive pigmentation pattern in eggplant, fruit development in other species utilize homologous regulatory factors to control the temporal and spatial production of different pigment classes.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101321"},"PeriodicalIF":9.4,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143722008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-24DOI: 10.1016/j.xplc.2025.101320
Nicole Babineau, Le Thanh Dien Nguyen, Davis Mathieu, Clint McCue, Nicholas Schlecht, Taylor Abrahamson, Björn Hamberger, Lucas Busta
Researchers have uncovered hundreds of thousands of natural products, many of which contribute to medicine, materials, and agriculture. However, missing knowledge of the biosynthetic pathways to these products hinders their expanded use. Nucleotide sequencing is key in pathway elucidation efforts, and analyses of natural products' molecular structures, though seldom discussed explicitly, also play an important role by suggesting hypothetical pathways for testing. Structural analyses are also important in drug discovery, where many molecular representation systems - methods of representing molecular structures in a computer-friendly format - have been developed. Unfortunately, pathway elucidation investigations seldom use these representation systems. This gap is likely because those systems are primarily built to document molecular connectivity and topology, rather than the absolute positions of bonds and atoms in a common reference frame, the latter of which enables chemical structures to be connected with potential underlying biosynthetic steps. Here, we expand on recently developed skeleton-based molecular representation systems by implementing common reference frame-oriented system. We tested this system using triterpenoid structures as a case study and explored the system's applications in biosynthesis and structural diversity tasks. The common reference frame system can identify structural regions of high or low variability on the scale of atoms and bonds and enable hierarchical clustering that is closely connected to underlying biosynthesis. Combined with phylogenetic distribution information, the system illuminates distinct sources of structural variability, such as different enzyme families operating in the same pathway. These characteristics outline the potential of common reference frame molecular representation systems to support large-scale pathway elucidation efforts.
{"title":"A molecular representation system with a common reference frame for analyzing triterpenoid structural diversity.","authors":"Nicole Babineau, Le Thanh Dien Nguyen, Davis Mathieu, Clint McCue, Nicholas Schlecht, Taylor Abrahamson, Björn Hamberger, Lucas Busta","doi":"10.1016/j.xplc.2025.101320","DOIUrl":"https://doi.org/10.1016/j.xplc.2025.101320","url":null,"abstract":"<p><p>Researchers have uncovered hundreds of thousands of natural products, many of which contribute to medicine, materials, and agriculture. However, missing knowledge of the biosynthetic pathways to these products hinders their expanded use. Nucleotide sequencing is key in pathway elucidation efforts, and analyses of natural products' molecular structures, though seldom discussed explicitly, also play an important role by suggesting hypothetical pathways for testing. Structural analyses are also important in drug discovery, where many molecular representation systems - methods of representing molecular structures in a computer-friendly format - have been developed. Unfortunately, pathway elucidation investigations seldom use these representation systems. This gap is likely because those systems are primarily built to document molecular connectivity and topology, rather than the absolute positions of bonds and atoms in a common reference frame, the latter of which enables chemical structures to be connected with potential underlying biosynthetic steps. Here, we expand on recently developed skeleton-based molecular representation systems by implementing common reference frame-oriented system. We tested this system using triterpenoid structures as a case study and explored the system's applications in biosynthesis and structural diversity tasks. The common reference frame system can identify structural regions of high or low variability on the scale of atoms and bonds and enable hierarchical clustering that is closely connected to underlying biosynthesis. Combined with phylogenetic distribution information, the system illuminates distinct sources of structural variability, such as different enzyme families operating in the same pathway. These characteristics outline the potential of common reference frame molecular representation systems to support large-scale pathway elucidation efforts.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101320"},"PeriodicalIF":9.4,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143712078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-20DOI: 10.1016/j.xplc.2025.101319
Xiaolong Zhang, Bin Feng, Yu Wang, Tingting Mu, Ming Zheng, Changbin Gao, Biaoming Zhang, Yan Li, Haitao Zhang, Wenya Yuan, Wei Hua, Haitao Li
{"title":"Targeted disruption of five Bna.BRC1 homologs in rapeseed generates a highly branched germplasm for its multifunctional utilization.","authors":"Xiaolong Zhang, Bin Feng, Yu Wang, Tingting Mu, Ming Zheng, Changbin Gao, Biaoming Zhang, Yan Li, Haitao Zhang, Wenya Yuan, Wei Hua, Haitao Li","doi":"10.1016/j.xplc.2025.101319","DOIUrl":"https://doi.org/10.1016/j.xplc.2025.101319","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101319"},"PeriodicalIF":9.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143677414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-15DOI: 10.1016/j.xplc.2025.101317
Kamankshi Sonkar, Amarjeet Singh
{"title":"Wax deposition is vital for thermotolerance in rice.","authors":"Kamankshi Sonkar, Amarjeet Singh","doi":"10.1016/j.xplc.2025.101317","DOIUrl":"https://doi.org/10.1016/j.xplc.2025.101317","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101317"},"PeriodicalIF":9.4,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}