Huan Chen, Huihui Yuan, Zhongqin Dai, Sheng Feng, Mengting Zheng, Chujun Zheng, Jun Jin, Meifen Wu, Xiangwei Wu, Jun Lu, Yan Lu, Zhaoyin Wen
{"title":"Surface Gradient Ni-Rich Cathode for Li-Ion Batteries","authors":"Huan Chen, Huihui Yuan, Zhongqin Dai, Sheng Feng, Mengting Zheng, Chujun Zheng, Jun Jin, Meifen Wu, Xiangwei Wu, Jun Lu, Yan Lu, Zhaoyin Wen","doi":"10.1002/adma.202401052","DOIUrl":null,"url":null,"abstract":"<p>Nickel-rich layered oxide cathode material LiNi<sub>x</sub>Co<sub>y</sub>Mn<sub>z</sub>O<sub>2</sub> (NCM) has emerged as a promising candidate for next-generation lithium-ion batteries (LIBs). These cathode materials possess high theoretical specific capacity, fast electron/ion transfer rate, and high output voltage. However, their potential is impeded by interface instability, irreversible phase transition, and the resultant significant capacity loss, limiting their practical application in LIBs. In this work, a simple and scalable approach is proposed to prepare gradient cathode material (M-NCM) with excellent structural stability and rate performance. Taking advantage of the strong coordination of Ni<sup>2+</sup> with ammonia and the reduction reaction of KMnO<sub>4</sub>, the elemental compositions of the Ni-rich cathode are reasonably adjusted. The resulted gradient compositional design plays a crucial role in stabilizing the crystal structure, which effectively mitigates Li/Ni mixing and suppresses unwanted surficial parasitic reactions. As a result, the M-NCM cathode maintains 98.6% capacity after 200 cycles, and a rapid charging ability of 107.5 mAh g<sup>−1</sup> at 15 C. Furthermore, a 1.2 Ah pouch cell configurated with graphite anode demonstrates a lifespan of over 500 cycles with only 8% capacity loss. This work provides a simple and scalable approach for the in situ construction of gradient cathode materials via cooperative coordination and deposition reactions.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202401052","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nickel-rich layered oxide cathode material LiNixCoyMnzO2 (NCM) has emerged as a promising candidate for next-generation lithium-ion batteries (LIBs). These cathode materials possess high theoretical specific capacity, fast electron/ion transfer rate, and high output voltage. However, their potential is impeded by interface instability, irreversible phase transition, and the resultant significant capacity loss, limiting their practical application in LIBs. In this work, a simple and scalable approach is proposed to prepare gradient cathode material (M-NCM) with excellent structural stability and rate performance. Taking advantage of the strong coordination of Ni2+ with ammonia and the reduction reaction of KMnO4, the elemental compositions of the Ni-rich cathode are reasonably adjusted. The resulted gradient compositional design plays a crucial role in stabilizing the crystal structure, which effectively mitigates Li/Ni mixing and suppresses unwanted surficial parasitic reactions. As a result, the M-NCM cathode maintains 98.6% capacity after 200 cycles, and a rapid charging ability of 107.5 mAh g−1 at 15 C. Furthermore, a 1.2 Ah pouch cell configurated with graphite anode demonstrates a lifespan of over 500 cycles with only 8% capacity loss. This work provides a simple and scalable approach for the in situ construction of gradient cathode materials via cooperative coordination and deposition reactions.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.