Poly(ester-alt-acetal) Electrolyte via In Situ Copolymerization for High-Voltage Lithium Metal Batteries: Lithium Salt Catalysts Deciding Stable Solid-Electrolyte Interphase

IF 5.1 Q1 POLYMER SCIENCE ACS Macro Letters Pub Date : 2024-06-23 DOI:10.1002/adfm.202405951
Jiafang Guo, Xiong Liu, Zikai Shen, Yanbing Lv, Xun Zhang, Chengjian Zhang, Xinghong Zhang
{"title":"Poly(ester-alt-acetal) Electrolyte via In Situ Copolymerization for High-Voltage Lithium Metal Batteries: Lithium Salt Catalysts Deciding Stable Solid-Electrolyte Interphase","authors":"Jiafang Guo,&nbsp;Xiong Liu,&nbsp;Zikai Shen,&nbsp;Yanbing Lv,&nbsp;Xun Zhang,&nbsp;Chengjian Zhang,&nbsp;Xinghong Zhang","doi":"10.1002/adfm.202405951","DOIUrl":null,"url":null,"abstract":"<p>The in situ-formed polymer electrolytes provide a vital solution for improving both safety and performance in the high-voltage lithium metal batteries. This study reports new poly(ester-<i>alt</i>-acetal) (PEA) electrolytes, synthesized through in situ alternating copolymerization of glutaric anhydride and 1,3-dioxane. In the presence of 25 wt.% lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), three lithium salts, lithium difluoro(oxalate)borate (LiDFOB), lithium hexafluorophosphate (LiPF<sub>6</sub>), and lithium tetrafluoroborate (LiBF<sub>4</sub>) are employed as the catalysts for the copolymerization. These lithium salts can modulate the compositions of the solid-electrolyte interphase (SEI) layer. PEA-LiPF<sub>6</sub> exhibits outstanding SEI chemistry, with observing the highest LiF content, thereby achieving a remarkable critical current density of up to 2.5 mA cm<sup>−2</sup>, a Li<sup>+</sup> transference number of 0.81, and an expansive electrochemical stability window of 6.0 V. Furthermore, PEA-LiPF<sub>6</sub> demonstrates noteworthy capacity retention rates of 96.6% (0.5 C, 200th/first cycle in LiFePO<sub>4</sub>||Li), 95.6% (0.5 C, 100th/first cycle in LiMn<sub>0.6</sub>Fe<sub>0.4</sub>PO<sub>4</sub>||Li), 95.1% (1 C, 100th/first cycle in LiCoO<sub>2</sub>||Li), and 87.0% (1 C, 100th/first cycle in LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub>||Li full-cells). This work demonstrates a facile in situ route to fabricate polymer electrolytes for high-voltage lithium-metal batteries with balanced and comprehensive performance.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202405951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The in situ-formed polymer electrolytes provide a vital solution for improving both safety and performance in the high-voltage lithium metal batteries. This study reports new poly(ester-alt-acetal) (PEA) electrolytes, synthesized through in situ alternating copolymerization of glutaric anhydride and 1,3-dioxane. In the presence of 25 wt.% lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), three lithium salts, lithium difluoro(oxalate)borate (LiDFOB), lithium hexafluorophosphate (LiPF6), and lithium tetrafluoroborate (LiBF4) are employed as the catalysts for the copolymerization. These lithium salts can modulate the compositions of the solid-electrolyte interphase (SEI) layer. PEA-LiPF6 exhibits outstanding SEI chemistry, with observing the highest LiF content, thereby achieving a remarkable critical current density of up to 2.5 mA cm−2, a Li+ transference number of 0.81, and an expansive electrochemical stability window of 6.0 V. Furthermore, PEA-LiPF6 demonstrates noteworthy capacity retention rates of 96.6% (0.5 C, 200th/first cycle in LiFePO4||Li), 95.6% (0.5 C, 100th/first cycle in LiMn0.6Fe0.4PO4||Li), 95.1% (1 C, 100th/first cycle in LiCoO2||Li), and 87.0% (1 C, 100th/first cycle in LiNi0.6Co0.2Mn0.2O2||Li full-cells). This work demonstrates a facile in situ route to fabricate polymer electrolytes for high-voltage lithium-metal batteries with balanced and comprehensive performance.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高电压锂金属电池的原位共聚聚(酯-醇-缩醛)电解质:锂盐催化剂决定稳定的固态电解质间相
原位形成的聚合物电解质为提高高压锂金属电池的安全性和性能提供了重要的解决方案。本研究报告介绍了通过戊二酸酐和 1,3- 二氧六环原位交替共聚合成的新型聚(酯-盐-缩醛)(PEA)电解质。在 25 wt.% 的双(三氟甲磺酰)亚胺锂(LiTFSI)存在下,采用了三种锂盐:二氟(草酸盐)硼酸锂(LiDFOB)、六氟磷酸锂(LiPF6)和四氟硼酸锂(LiBF4)作为共聚的催化剂。这些锂盐可以调节固体电解质相间层(SEI)的成分。PEA-LiPF6 具有出色的 SEI 化学性质,其 LiF 含量最高,因此临界电流密度高达 2.5 mA cm-2,锂+转移数为 0.81,电化学稳定性窗口为 6.0 V。此外,PEA-LiPF6 的容量保持率分别为 96.6%(0.5 C,在 LiFePO4 ||Li 中的第 200 次/第一周期)、95.6%(0.5 C,在 LiMn0.6Fe0.4PO4||Li)、95.1%(1 C,LiCoO2||Li 中的第 100 次/第一周期)和 87.0%(1 C,LiNi0.6Co0.2Mn0.2O2||Li 全电池中的第 100 次/第一周期)。这项工作展示了一种简便的原位制备聚合物电解质的方法,可用于制备具有均衡综合性能的高压锂金属电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.40
自引率
3.40%
发文量
209
审稿时长
1 months
期刊介绍: ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science. With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.
期刊最新文献
T cell senescence may contribute to immunothrombosis via Th17 immune transition in COVID-19. Glow in the dark fluid: Nanoparticles and DNA-binding antibodies as priming agents for liquid biopsies. Drinking water safety improvement and future challenge of lakes and reservoirs. Access to N-α-quaternary chiral morpholines via Cu-catalyzed asymmetric propargylic amination/desymmetrization strategy. The emerging hybrid electrochemical energy technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1