Efficient Ozone Elimination Over MnO2 via Double Moisture-Resistance Protection of Active Carbon and CeO2

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-06-25 DOI:10.1021/acs.est.4c02482
Wenjing Dai, Boge Zhang, Jian Ji, Tianle Zhu, Biyuan Liu, Yanling Gan, Fei Xiao, Jiarui Zhang and Haibao Huang*, 
{"title":"Efficient Ozone Elimination Over MnO2 via Double Moisture-Resistance Protection of Active Carbon and CeO2","authors":"Wenjing Dai,&nbsp;Boge Zhang,&nbsp;Jian Ji,&nbsp;Tianle Zhu,&nbsp;Biyuan Liu,&nbsp;Yanling Gan,&nbsp;Fei Xiao,&nbsp;Jiarui Zhang and Haibao Huang*,&nbsp;","doi":"10.1021/acs.est.4c02482","DOIUrl":null,"url":null,"abstract":"<p >The widespread ozone (O<sub>3</sub>) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O<sub>2</sub> is the most promising method to eliminate ambient O<sub>3</sub>, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein, we elaborately developed a splendidly active and stable Mn-based catalyst with double hydrophobic protection of active carbon (AC) and CeO<sub>2</sub> (CeMn@AC), which possessed abundant interfacial oxygen vacancies and excellent desorption of peroxide intermediates (O<sub>2</sub><sup>2–</sup>). Under extremely humid (RH = 90%) conditions and a high space velocity of 1200 L h<sup>–1</sup> g<sup>–1</sup>, the optimized CeMn@AC achieved nearly 100% O<sub>3</sub> conversion (140 h) at 5 ppm, showing unprecedented catalytic activity and moisture resistance toward O<sub>3</sub> decomposition. <i>In situ</i> DRIFTS and theory calculations confirmed that the exceptional moisture resistance of CeMn@AC was ascribed to the double protection effect of AC and CeO<sub>2</sub>, which cooperatively prevented the competitive adsorption of H<sub>2</sub>O molecules and their accumulation on the active sites of MnO<sub>2</sub>. AC provided a hydrophobic reaction environment, and CeO<sub>2</sub> further alleviated moisture deterioration of the MnO<sub>2</sub> particles exposed on the catalyst surface via the moisture-resistant oxygen vacancies of MnO<sub>2</sub>–CeO<sub>2</sub> crystal boundaries. This work offers a simple and efficient strategy for designing moisture-resistant materials and facilitates the practical application of the O<sub>3</sub> decomposition catalysts in various environments.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c02482","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread ozone (O3) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O2 is the most promising method to eliminate ambient O3, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein, we elaborately developed a splendidly active and stable Mn-based catalyst with double hydrophobic protection of active carbon (AC) and CeO2 (CeMn@AC), which possessed abundant interfacial oxygen vacancies and excellent desorption of peroxide intermediates (O22–). Under extremely humid (RH = 90%) conditions and a high space velocity of 1200 L h–1 g–1, the optimized CeMn@AC achieved nearly 100% O3 conversion (140 h) at 5 ppm, showing unprecedented catalytic activity and moisture resistance toward O3 decomposition. In situ DRIFTS and theory calculations confirmed that the exceptional moisture resistance of CeMn@AC was ascribed to the double protection effect of AC and CeO2, which cooperatively prevented the competitive adsorption of H2O molecules and their accumulation on the active sites of MnO2. AC provided a hydrophobic reaction environment, and CeO2 further alleviated moisture deterioration of the MnO2 particles exposed on the catalyst surface via the moisture-resistant oxygen vacancies of MnO2–CeO2 crystal boundaries. This work offers a simple and efficient strategy for designing moisture-resistant materials and facilitates the practical application of the O3 decomposition catalysts in various environments.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过活性碳和 CeO2 的双重防潮保护,在 MnO2 上实现高效臭氧消除。
大范围的臭氧(O3)污染对人类健康和生态系统危害极大。催化分解为 O2 是消除环境中 O3 的最有前途的方法,而催化剂在潮湿条件下的快速失活仍是其应用面临的主要挑战。在此,我们精心研制了一种活性高、稳定性好的锰基催化剂,它具有活性碳(AC)和 CeO2 的双重疏水保护(CeMn@AC),具有丰富的界面氧空位和优异的过氧化物中间产物(O22-)解吸能力。在极度潮湿(相对湿度 = 90%)和 1200 L h-1 g-1 的高空间速度条件下,优化的 CeMn@AC 在 5 ppm 的条件下实现了近 100% 的 O3 转化(140 h),显示出前所未有的催化活性和对 O3 分解的耐湿性。原位 DRIFTS 和理论计算证实,CeMn@AC 的优异防潮性能归功于 AC 和 CeO2 的双重保护作用,它们共同阻止了 H2O 分子的竞争性吸附及其在 MnO2 活性位点上的积累。AC 提供了疏水的反应环境,而 CeO2 则通过 MnO2-CeO2 晶界的防潮氧空位进一步缓解了暴露在催化剂表面的 MnO2 颗粒的受潮变质。这项工作为设计防潮材料提供了一种简单而有效的策略,并促进了 O3 分解催化剂在各种环境中的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Antibiotics and Pesticides Enhancing the Transfer of Resistomes among Soil-Bayberry-Fruit Fly Food Chain in the Orchard Ecosystem. Molecular Insights into Gas-Particle Partitioning and Viscosity of Atmospheric Brown Carbon. Monitoring the Biochemical Activity of Single Anammox Granules with Microbarometers. Rethinking Porosity-Based Diffusivity Estimates for Sorptive Gas Transport at Variable Temperatures. The Role of Human Adiponectin Receptor 1 in 2-Ethylhexyl Diphenyl Phosphate Induced Lipid Metabolic Disruption.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1