Sarah A B Knapp, David S Austin, Stephen L Aita, Joshua E Caron, Tyler Owen, Nicholas C Borgogna, Victor A Del Bene, Robert M Roth, William P Milberg, Benjamin D Hill
{"title":"Neurocognitive and psychiatric outcomes associated with postacute COVID-19 infection without severe medical complication: a meta-analysis.","authors":"Sarah A B Knapp, David S Austin, Stephen L Aita, Joshua E Caron, Tyler Owen, Nicholas C Borgogna, Victor A Del Bene, Robert M Roth, William P Milberg, Benjamin D Hill","doi":"10.1136/jnnp-2024-333950","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cognitive symptoms are often reported by those with a history of COVID-19 infection. No comprehensive meta-analysis of neurocognitive outcomes related to COVID-19 exists despite the influx of studies after the COVID-19 pandemic. This study meta-analysed observational research comparing cross-sectional neurocognitive outcomes in adults with COVID-19 (without severe medical/psychiatric comorbidity) to healthy controls (HCs) or norm-referenced data.</p><p><strong>Methods: </strong>Data were extracted from 54 studies published between January 2020 and June 2023. Hedges' g was used to index effect sizes, which were pooled using random-effects modelling. Moderating variables were investigated using meta-regression and subgroup analyses.</p><p><strong>Results: </strong>Omnibus meta-analysis of 696 effect sizes extracted across 54 studies (COVID-19 n=6676, HC/norm-reference n=12 986; average time since infection=~6 months) yielded a small but significant effect indicating patients with COVID-19 performed slightly worse than HCs on cognitive measures (g=-0.36; 95% CI=-0.45 to -0.28), with high heterogeneity (Q=242.30, p<0.001, τ=0.26). Significant within-domain effects was yielded by cognitive screener (g=-0.55; 95% CI=-0.75 to -0.36), processing speed (g=-0.44; 95% CI=-0.57 to -0.32), global cognition (g=-0.40; 95% CI=-0.71 to -0.09), simple/complex attention (g=-0.38; 95% CI=-0.46 to -0.29), learning/memory (g=-0.34; 95% CI=-0.46 to -0.22), language (g=-0.34; 95% CI=-0.45 to -0.24) and executive function (g=-0.32; 95% CI=-0.43 to -0.21); but not motor (g=-0.40; 95% CI=-0.89 to 0.10), visuospatial/construction (g=-0.09; 95% CI=-0.23 to 0.05) and orientation (g=-0.02; 95% CI=-0.17 to 0.14). COVID-19 samples with elevated depression, anxiety, fatigue and disease severity yielded larger effects.</p><p><strong>Conclusion: </strong>Mild cognitive deficits are associated with COVID-19 infection, especially as detected by cognitive screeners and processing speed tasks. We failed to observe clinically meaningful cognitive impairments (as measured by standard neuropsychological instruments) in people with COVID-19 without severe medical or psychiatric comorbidities.</p>","PeriodicalId":16418,"journal":{"name":"Journal of Neurology, Neurosurgery, and Psychiatry","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurology, Neurosurgery, and Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jnnp-2024-333950","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cognitive symptoms are often reported by those with a history of COVID-19 infection. No comprehensive meta-analysis of neurocognitive outcomes related to COVID-19 exists despite the influx of studies after the COVID-19 pandemic. This study meta-analysed observational research comparing cross-sectional neurocognitive outcomes in adults with COVID-19 (without severe medical/psychiatric comorbidity) to healthy controls (HCs) or norm-referenced data.
Methods: Data were extracted from 54 studies published between January 2020 and June 2023. Hedges' g was used to index effect sizes, which were pooled using random-effects modelling. Moderating variables were investigated using meta-regression and subgroup analyses.
Results: Omnibus meta-analysis of 696 effect sizes extracted across 54 studies (COVID-19 n=6676, HC/norm-reference n=12 986; average time since infection=~6 months) yielded a small but significant effect indicating patients with COVID-19 performed slightly worse than HCs on cognitive measures (g=-0.36; 95% CI=-0.45 to -0.28), with high heterogeneity (Q=242.30, p<0.001, τ=0.26). Significant within-domain effects was yielded by cognitive screener (g=-0.55; 95% CI=-0.75 to -0.36), processing speed (g=-0.44; 95% CI=-0.57 to -0.32), global cognition (g=-0.40; 95% CI=-0.71 to -0.09), simple/complex attention (g=-0.38; 95% CI=-0.46 to -0.29), learning/memory (g=-0.34; 95% CI=-0.46 to -0.22), language (g=-0.34; 95% CI=-0.45 to -0.24) and executive function (g=-0.32; 95% CI=-0.43 to -0.21); but not motor (g=-0.40; 95% CI=-0.89 to 0.10), visuospatial/construction (g=-0.09; 95% CI=-0.23 to 0.05) and orientation (g=-0.02; 95% CI=-0.17 to 0.14). COVID-19 samples with elevated depression, anxiety, fatigue and disease severity yielded larger effects.
Conclusion: Mild cognitive deficits are associated with COVID-19 infection, especially as detected by cognitive screeners and processing speed tasks. We failed to observe clinically meaningful cognitive impairments (as measured by standard neuropsychological instruments) in people with COVID-19 without severe medical or psychiatric comorbidities.
期刊介绍:
The Journal of Neurology, Neurosurgery & Psychiatry (JNNP) aspires to publish groundbreaking and cutting-edge research worldwide. Covering the entire spectrum of neurological sciences, the journal focuses on common disorders like stroke, multiple sclerosis, Parkinson’s disease, epilepsy, peripheral neuropathy, subarachnoid haemorrhage, and neuropsychiatry, while also addressing complex challenges such as ALS. With early online publication, regular podcasts, and an extensive archive collection boasting the longest half-life in clinical neuroscience journals, JNNP aims to be a trailblazer in the field.